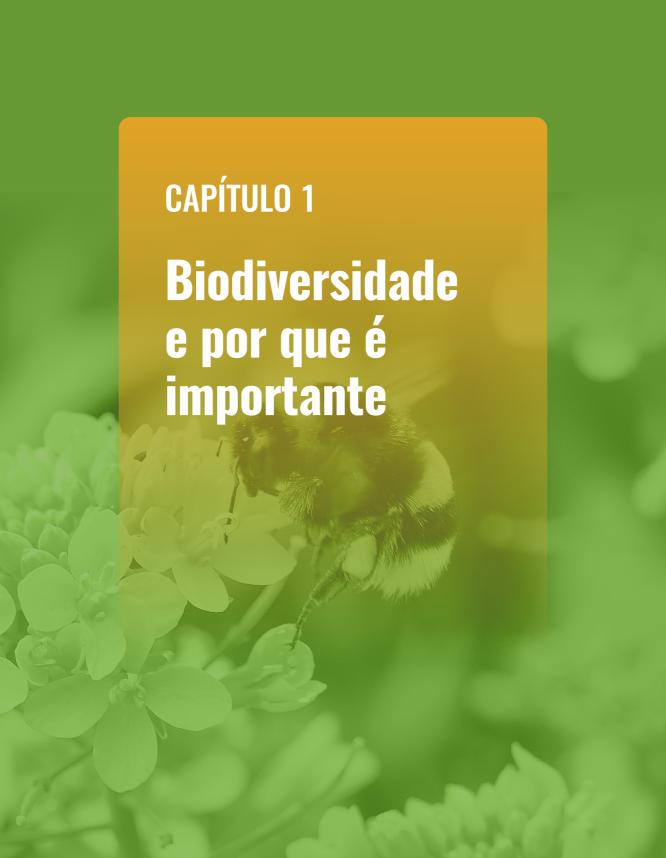


showcase.eu

Follow SHOWCASE project on



This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No862480.

Tabela de conteúdos

- 4 Capítulo 1: Biodiversidade e por que é importante
- 9 Capítulo 2: Introdução ao projeto SHOWCASE
- 14 Capítulo 3: Relação entre biodiversidade, rendimento e lucro
- Capítulo 4: O que influencia as decisões nas explorações agrícolas sobre a biodiversidade?
- 23 Capítulo 5: Os agricultores no comando da investigação
- 28 Capítulo 6: Abordagens gerais à agricultura amiga da natureza
- 32 Capítulo 7: Resumo e conclusões
- 34 Glossário
- Recursos adicionais e leituras complementares
- 35 Colaboradores, créditos e agradecimentos
- 37 Estudos de caso

O que é biodiversidade?

A biodiversidade nas terras agrícolas consiste na rica variedade de todos os seres vivos dentro do ecossistema de uma exploração agrícola **e as formas complexas como estas interagem**. Esta compreende muito mais que as espécies vegetais e animais exploradas, abrangendo:

- Diversidad genética: a variação dentro de uma única cultura ou espécie animal, que pode melhorar a resiliência a pragas ou doenças.
- Diversidade de espécies: todo o espectro de diferentes plantas e animais presentes, incluindo a variedade de diferentes plantas cultivadas e as diferentes raças ou tipos de gado criado. Abrange também outros animais selvagens, como aves, mamíferos e insetos (tanto polinizadores benéficos como controladores de pragas), até à vida microscópica no solo, como fungos e bactérias.
- Diversidade do ecossistema: A variedade de habitats nas explorações agrícolas e em torno delas, incluindo campos, sebes, bosques e lagoas, e a forma como estas diferentes áreas se interligam e funcionam.

Considere-a como a **infraestrutura biológica** de uma exploração agrícola. Uma comunidade biológica saudável e diversificada pode apoiar e fortalecer os processos naturais de uma exploração agrícola, contribuindo para a saúde do solo, a qualidade da água, **o controlo natural de pragas** e uma polinização eficiente. Em última análise, uma biodiversidade robusta pode aumentar a **resiliência e a produtividade a longo prazo** de um sistema agrícola.

Um recurso em declínio

A biodiversidade das terras agrícolas está **a diminuir rapidamente** em toda a Europa, uma tendência que está **a comprometer os serviços dos ecossistemas essenciais** para a futura produção de alimentos. Por exemplo, a redução da polinização pode afetar o rendimento de algumas culturas, e a diminuição do número de predadores naturais pode resultar num aumento descontrolado do número de pragas. A menor diversidade de organismos do solo pode diminuir a saúde do solo, tornando as explorações agrícolas mais vulneráveis a condições meteorológicas extremas e aumentando a necessidade de inputs externos. Isto significa que o declínio da biodiversidade é prejudicial para **a sustentabilidade e rentabilidade a longo prazo da agricultura**.

Navegando pelas realidades da agricultura amiga da natureza

Embora os benefícios sejam claros, a adoção de práticas amigas da natureza nem sempre é simples. **As restrições e complexidades do mundo real da agricultura podem incluir:**

- Pressões económicas: Preocupações com os potenciais impactes nos rendimentos e nos lucros imediatos, especialmente se for necessário diminuir as áreas afetas à produção direta ou se as novas práticas exigirem investimento inicial em tempo e energia.
- Aspetos práticos da gestão: necessidade de adquirir novas competências, conhecimentos, equipamentos ou mais mão de obra para gerir habitats diversificados ou diferentes sistemas de cultivo.
- Exigências do mercado: atender a requisitos específicos dos clientes que nem sempre estão alinhados com abordagens agrícolas diversificadas. Por exemplo, revendedores que exigem produtos de tamanho e aparência uniforme, o que pode favorecer a monocultura em detrimento de uma exploração diversificada; ou pressão para usar recursos convencionais específicos, para atender aos padrões da cadeia de abastecimento.
- Mudanças nas políticas: novas políticas, ou a reformulação de políticas existentes, muitas vezes exigem a alteração das práticas de gestão da exploração agrícola, dificultando a elaboração de planos e investimentos a longo prazo.
- Desafios da vida selvagem: lidar com problemas criados por certas espécies silvestres. Por exemplo, a herbivoria de culturas por veados, o consumo de frutos por pássaros, ou o crescimento de ervas daninhas que competem com as culturas.
- Fatores sociais: Operar dentro das normas da comunidade ou sob a influência das práticas agrícolas vizinhas.
- Infraestrutura e paisagem agrícola existente: Trabalhar com a disposição e as condições atuais dos terrenos agrícolas, como por exemplo o declive e qualidade do solo.

Para ajudar a reduzir ou mesmo evitar estas potenciais barreiras, é importante tornar a gestão da biodiversidade como parte integrante da agricultura,

mantendo a produtividade agrícola ou o rendimento da exploração. A agricultura amiga da natureza consiste em encontrar **formas práticas e benéficas de integrar a natureza, que funcionem para cada exploração específica,** enquanto se enfrentam os desafios práticos do mundo real.

Oportunidades

Novos caminhos para novas fontes de rendimento e maior resiliência

Apesar destes desafios, uma agricultura que respeite a natureza pode criar oportunidades e aumentar a resiliência das explorações agrícolas a longo prazo. Uma agricultura **menos intensiva*** pode fomentar a biodiversidade e criar formas de rendimento. Embora seja claro que a mudança na gestão da biodiversidade numa exploração agrícola está associada a custos financeiros e não financeiros, plantar culturas de sob cobertura, manter sebes ou criar faixas de flores pode estar em conformidade com as normas biológicas, ser elegível para subsídios agroambientais ou ajudar a vender em mercados premium, que valorizam a agricultura sustentável.

* O oposto de agricultura intensiva é por vezes referido como «agricultura extensiva». Para maior clareza linguística, referimo-nos a isto como «menos intensiva».

Benefícios mais amplos

Por que a biodiversidade é importante para todos

Os benefícios da biodiversidade vão muito além dos limites da exploração agrícola. Uma paisagem agrícola biodiversa pode ajudar a manter a produção alimentar estável e menos dependente de fertilizantes e pesticidas artificiais. Práticas como plantar culturas de sob cobertura, cuidar de sebes e criar faixas de flores melhoram diretamente a saúde e a fertilidade do solo. Isto torna a exploração agrícola mais capaz de resistir aos impactes das alterações climáticas, como secas ou inundações. Solos e plantas saudáveis podem capturar e armazenar carbono, e paisagens que proporcionem diferentes habitats para a vida selvagem podem suportar melhor os efeitos do clima extremo. Um sistema biodiverso é, portanto, um sistema mais estável, mais resistente a doenças, a surtos de pragas e às pressões de um clima em mudança. Esta estabilidade é um resultado direto da diversidade de habitats e de espécies, que criam redundância e uma rede de interações que impede que uma única doença ou praga destrua todo o sistema, uma fraqueza fundamental da monocultura simplificada.

Os benefícios culturais da biodiversidade

A biodiversidade também traz benefícios culturais e sociais, uma vez que muitas paisagens agrícolas tradicionais são moldadas por diversas culturas, animais e práticas que fazem parte do rico património rural da Europa. As paisagens rurais podem ter valor histórico e estético, aproximando as pessoas nas zonas rurais e oferecendo oportunidades de aprendizagem e relaxamento. Passar tempo na natureza ajuda a melhorar o bem-estar, a promover a consciência ambiental e a fortalecer a ligação entre as comunidades rurais e urbanas.

Apoiar a transição para uma agricultura respeitadora da natureza

Para integrar com sucesso a biodiversidade na agricultura, **é necessário apoio prático, exemplos claros e investigação informativa**. O projeto SHOWCASE contribuiu para todos estes aspetos, a fim de ajudar a informar e impulsionar abordagens eficazes que funcionem no terreno.

O que é o projeto SHOWCASE?

O projeto SHOWCASE foca-se na integração da biodiversidade na agricultura quotidiana para compreender o seu valor prático. Explora como os subsídios, o aconselhamento e as políticas podem apoiar a biodiversidade nas explorações agrícolas, e testa formas de implementar uma agricultura favorável à biodiversidade.

A abordagem principal consistiu em criar uma rede de agricultores, consultores, população local e investigadores em 11 «Áreas Experimentais de Biodiversidade» (do inglês, «Experimental Biodiversity Areas» - EBA, **Figura 1**) em 10 países europeus (por vezes com base em projetos ou iniciativas nacionais existentes, centradas na biodiversidade das áreas agrícolas). O objetivo era criar grupos locais, denominados «comunidades de prática», onde as pessoas pudessem trabalhar em conjunto para testar e melhorar novas ideias para aumentar a biodiversidade, reforçando simultaneamente a produtividade agrícola.

Investigação em explorações agrícolas reais, com agricultores comerciais

O projeto SHOWCASE realizou investigação numa vasta gama de explorações agrícolas, desde pastagens a pomares. Estas variaram entre intensivas (utilizando elevados inputs, como fertilizantes, pesticidas e maquinaria para obter o maior rendimento possível) e menos intensivas (**Tabela 1**, **Figura 1**).

Tabela 1: Os países e sistemas abrangidos pelo projeto SHOWCASE.

Sistema agrícola	Descrição	Países Exemplo
Cultivo intensivo	Áreas dominadas pela produção em grande escala de cereais e culturas aráveis.	Suíça, Reino Unido
Agricultura arável com gado, pastagens ou florestas	Principalmente agricultura arável com alguma integração de pastagens ou pequenas áreas florestais.	França, Suécia, Hungria
Agricultura mista intensiva	Áreas com culturas aráveis intensivas e produção pecuária intensiva.	Países Baixos
Predominantemente pastagens com alguma cultura arável	Sistemas baseados em pastagens que também incluem alguma produção agrícola.	Hungria
Sistemas extensivos de pastagens	Agricultura de pastagens de baixo rendimento, mais focada em pastagens e prados para feno do que na produção agrícola.	Estónia, Roménia
Culturas arbóreas permanentes	Paisagens dominadas por pomares ou olivais.	Portugal, Espanha

Figura 1: Mapa da das Áreas Experimentais de Biodiversidade (EAB) do projeto SHOWCASE. As EAB estão localizadas em muitos tipos diferentes de terrenos agrícolas e tipos de explorações agrícolas encontrados na Europa.

Aprendizagem e partilha entre regiões

Em cada área, representantes de vários grupos (agricultores, investigadores, técnicos de extensão agrária, população local, consultores e outros) reuniram-se para identificar e priorizar as principais questões locais ou regionais que afetam tanto a biodiversidade como a produtividade agrícola, a fim de conceber e testar práticas favoráveis à biodiversidade que se adaptem às suas condições locais. As EBAs também servem como centros de partilha de conhecimentos locais e nacionais, e algumas funcionam como explorações agrícolas de demonstração.

Resumo dos diferentes tratamentos experimentais

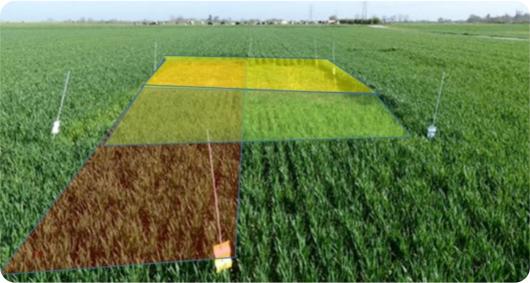
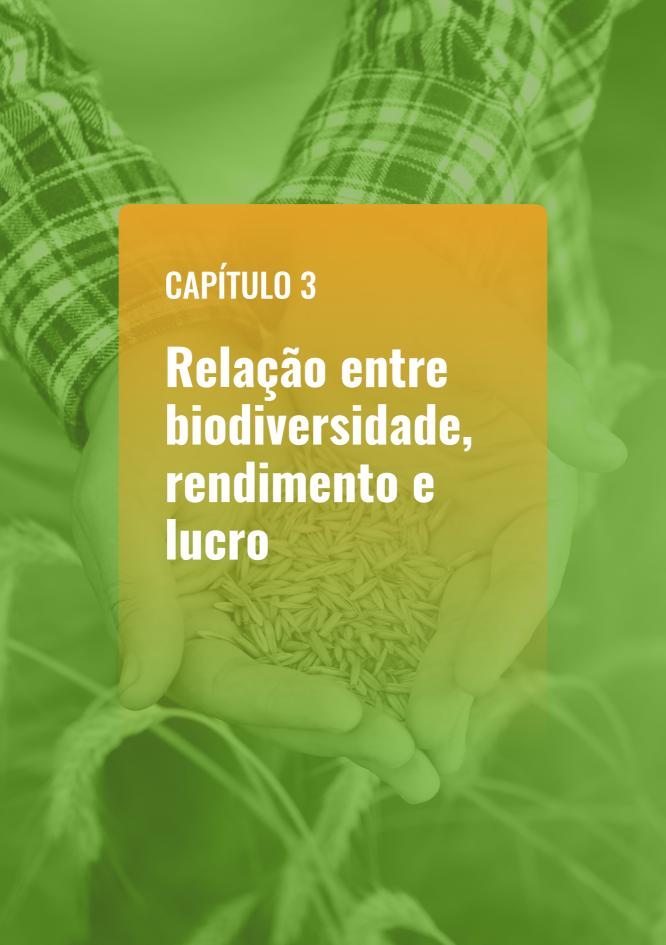

Testámos diferentes tratamentos experimentais (**Tabela 2, Figura 2**) e medimos o efeito na biodiversidade e, em alguns casos, na produtividade agrícola.

Tabela 2: Tratamentos experimentais em diferentes países. Cada ensaio decorreu em 2022 e 2023, exceto na Holanda e na Estónia, que começaram um ano antes. Mais detalhes estão disponíveis nos estudos de caso completos.


Tratamento experimental	Cultura	País
Sementeira de faixas de flores silvestres entre	Frutos de caroço	Espanha
fileiras de árvores	Azeitonas	Portugal
Cultivo de culturas de sob cobertura (sem culturas de sob cobertura, culturas de sob cobertura resistentes à geada, culturas de sob cobertura sensíveis à geada)	Culturas aráveis (trigo, cevada, aveia), intensivas	Reino Unido
Redução da intensidade da gestão (aplicação de fertilizantes/número de cortes) das pastagens, introduzindo sebes densas ou cultivando tremoço)	Mistura de culturas aráveis e pecuária	Países Baixos
Redução da intensidade da gestão (utilização de menos fertilizantes sintéticos e pesticidas, plantação de bordaduras floridas junto às culturas, sobsementeira1 e/ou escolher variedades de culturas adaptadas às condições locais)	Culturas aráveis (trigo, colza, cevada), intensivas	Suíça
Redução da intensidade da gestão (utilizando menos pesticidas e nitrogénio sintético nas explorações agrícolas convencionais, reduzindo a mobilização do solo nas explorações agrícolas biológicas, evitando a lavoura profunda, utilizando a remoção de ervas daninhas por meios mecânicos e reduzindo a lavoura)	Cereais como o trigo (convencional e biológico)	França
Plantação de bordaduras floridas junto às culturas	Culturas aráveis (trigo, girassol, milho, cevada)	Hungria
Sementeira de flores nativas em terrenos em pousio	Prados	
Remoção de arbustos para manter pastagens (em comparação com áreas não geridas com alta densidade de arbustos)	Prados (pastagens e prados de feno, ceifados uma vez por ano)	Roménia
Pastagem costeiras em vez de abandono	Prados	Estónia

¹ Plantar uma planta secundária com a cultura para melhorar a saúde do solo e controlar as ervas daninhas.

Figura 2: Dois exemplos de campos experimentais. Em cima: olivais em Portugal com faixas de flores semeadas entre as linhas de árvores, em comparação com as não semeadas. Fotos de José Herrera. Em baixo: exemplos de parcelas num desenho fatorial duplo dentro de um campo de trigo. Todas as parcelas à esquerda receberam aplicação reduzida de nitrogénio (vermelho), as parcelas à direita receberam aplicação reduzida de herbicida (verde). As parcelas superiores foram deixadas sem sementeira (amarelo) para estimar a diversidade e abundância de ervas daninhas a partir do banco de sementes. Foto de Zone Atelier Plaine e Val de Sevre.

Los efectos de las prácticas de gestión respetuosas con la naturaleza sobre la biodiversidad, el rendimiento y los beneficios variaron en función del contexto específico (**Tabla 3**). En todos los casos se mejoró al menos un componente de la biodiversidad, mientras que el rendimiento se mantuvo estable o disminuyó, y en todos los casos, excepto uno, la intervención tuvo un coste financiero neto.

Para medir a biodiversidade, registámos o número de espécies de abelhas, minhocas e aranhas. As minhocas promovem a saúde do solo, as abelhas são polinizadoras essenciais e as aranhas são importantes para o controlo de pragas, o que pode aumentar o rendimento das culturas e os lucros agrícolas. Também registámos a diversidade de espécies vegetais.

Tabela 3: A biodiversidade, o rendimento e os efeitos económicos de cada ensaio em que o rendimento foi estimado. As setas indicam a direção da mudança. As setas sólidas indicam que este fator foi avaliado diretamente; as setas contornadas indicam que os impactos não foram medidos diretamente. Para o Reino Unido, Portugal e Espanha, assumiu-se que o impacto económico foi globalmente negativo devido ao custo da implementação da prática. Para a Suíça, também se assumiu que foi negativo, dada a redução do rendimento e os custos de implementação.

País	Tratamento experimental	Benefícios para a biodiversidade	Impacte no rendimento	Impacte económico
Espanha	Sementeira de faixas de flores silvestres entre linhas de árvores de pomar	Maior número e variedade de plantas, polinizadores e aranhas	Sem alterações	No incurrido, pero no cuantificado
Portugal	Sementeira de faixas de flores silvestres entre linhas de árvores de pomar	Maior diversidade e biomassa de plantas, e maior riqueza e abundância de abelhas, aranhas e plantas	Não medido	Não incorrido, mas não quantificado
Reino Unido	Plantação de culturas de sob cobertura	Mais cobertura vegetal, aranhas e minhocas. Maior diversidade de aranhas.	Sem alterações	Não medido
Países Baixos	Redução do uso de fertilizantes e cortes (pastagens)	Aumento exponencial da diversidade de plantas e invertebrados	Reducción proporcional del rendimiento	Los menores costes de gestión no compensaron la disminución de los ingresos
	Rotação de culturas com tremoço	Mais abelhões a visitar os tremoços na paisagem circundante após a floração	Não medido	Não medido
Suíça	Redução de 75% no uso de pesticidas	Maior diversidade de abelhas e aranhas (principalmente nas margens dos campos)	Menor em todas as culturas	Não medido
Francia	Redução do uso de pesticidas e nitrogénio (trigo)	Mais aranhas e espécies	Ligeira diminuição (não significativa)	Lucros mais elevados (Fig. 3) Organic Conventional

Quais os benefícios para a biodiversidade encontrados?

- **Espanha:** As faixas de flores levaram a um aumento de 10 vezes no número de polinizadores e ao dobro do número de espécies de aranhas, além de terem 100 vezes mais flores do que as áreas de controlo.
- Portugal: As faixas de flores levaram a uma maior diversidade e biomassa de plantas e a uma maior riqueza e abundância de abelhas, aranhas e plantas em ambos os anos em que o estudo foi realizado.
- Reino Unido: LA plantação de culturas de sob cobertura duplicou a cobertura vegetal e duplicou, ou triplicou, a biomassa vegetal nas parcelas em relação aos controlos. O número de aranhas aumentou 40% e a diversidade de famílias de aranhas 25%. O número de minhocas também aumentou 40% e a sua biomassa 50%, não apenas durante a plantação de culturas de sob cobertura, mas mesmo durante a cultura seguinte.
- Países Baixos: A redução da intensidade de gestão das pastagens levou a um aumento exponencial da diversidade de plantas e invertebrados. O cultivo de tremoço como parte da rotação de culturas aumentou o número de abelhões que visitavam os tremoceiros na paisagem circundante após a floração em aproximadamente 75%.
- Suíça: Os efeitos positivos na diversidade de aranhas e abelhas limitaram-se em grande parte às comunidades vegetais diversificadas nas margens dos campos, destacando a importância de realizar ensaios onde estes podem beneficiar mais as culturas adjacentes (e.g., abelhas para polinização e aranhas para controlo de pragas).
- França: Los campos de trigo con menos pesticidas y nitrógeno tenían, de media, un 20% más de arañas, tanto en número como en especies, en comparación con las parcelas y campos de control, al igual que ocurrió con la reducción del trabajo del suelo en los campos ecológicos.

Como a agricultura integrada com a biodiversidade afetou o rendimento

A agricultura integrada com a biodiversidade teve efeitos diferentes no rendimento em diferentes países, mas a maioria dos agricultores observou pouca ou nenhuma perda na produção.

- **Espanha:** As faixas de flores entre as linhas de árvores não afetaram o rendimento dos frutos dos pomares.
- Reino Unido: A plantação de culturas de sobcobertura não fez diferença no rendimento dos cereais após um ano (embora os benefícios possam acumular-se ao longo do tempo).

- Países Baixos: A redução da intensidade da gestão das pastagens levou a reduções aproximadamente proporcionais na produção. A produção não foi medida para a rotação de culturas de tremoço, uma vez que este era frequentemente arado e não colhido.
- Suíça: Nos locais onde o uso de pesticidas foi reduzido em 75%, os rendimentos caíram 11% na cevada, 8% no trigo e 18% na colza.
- França: Nos locais onde os pesticidas e o nitrogénio foram reduzidos em média 50%, o rendimento do trigo foi ligeiramente inferior nos campos experimentais em comparação com os campos de controlo (menos 4% nas explorações convencionais e menos 8% nas explorações biológicas), mas esta diferença não foi estatisticamente significativa (Figura 3).

Em geral, as perdas de rendimento ocorreram apenas quando a redução inputs externos foi elevada.

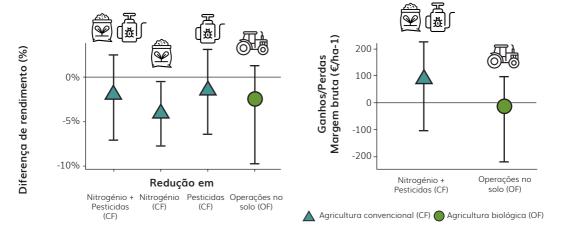
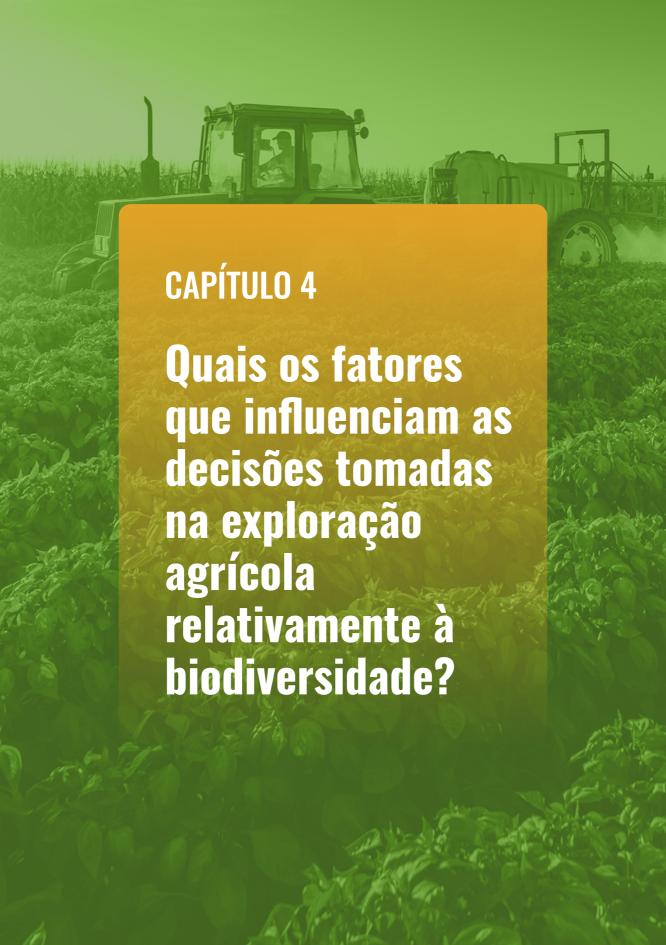


Figura 3: Variações do rendimento (à esquerda) e do lucro (à direita) entre explorações agrícolas experimentais (utilizando menos nitrogénio, pesticidas e operações do solo) e explorações agrícolas de controlo (sem alterações) em campos de trigo convencionais (azul) e biológicos (verde) (2022 e 2023) em França. Os rendimentos caíram menos de 5% em média, mas nas explorações convencionais, os lucros aumentaram cerca de € 95/ha, devido aos custos mais baixos dos recursos externos. As barras verticais representam a dispersão em torno da média (desvio padrão).

Como a agricultura integrada com a biodiversidade afetou a economia

França: As explorações agrícolas convencionais que reduziram a aplicação de pesticidas e nitrogénio aumentaram os lucros em € 95/ha, em média (até € 252 em 2022), graças à redução dos custos dos recursos externos. Nas explorações agrícolas biológicas, a diminuição da remoção de ervas daninhas por meios mecânicos ou da lavoura não teve efeito nos lucros, uma vez que os custos já eram baixos.


- Espanha, Reino Unido e Suíça: Estes ensaios não revelaram uma diferença de rendimento (ver em cima), mas o custo do ensaio não foi medido diretamente, pelo que se desconhece o impacte financeiro líquido, mas prevê-se que seja negativo.
- **Países Baixos**: A gestão menos intensiva das pastagens reduziu os custos para os agricultores, mas reduziu ainda mais os rendimentos devido ao menor rendimento.

Resumo

No geral, a agricultura amiga da natureza aumentou a biodiversidade em todos os países. Nos casos em que o rendimento foi quantificado, a maioria dos ensaios mostrou pouca ou nenhuma perda de rendimento, a menos que as reduções na aplicação de recursos externos fossem extremamente elevadas (e.g., Suíça e Países Baixos). Nos casos em que o rendimento não foi medido, assume-se como improvável que ocorressem ganhos, uma vez que os custos foram incorridos sem melhorias na produção.

Apenas na França um ensaio melhorou tanto a biodiversidade agrícola como o rendimento, apesar de se ter observado uma pequena diminuição do rendimento, tanto nos sistemas biológicos como nos convencionais. O facto de um ensaio ter melhorado o rendimento agrícola dependeu do custo e da sua implementação. Por exemplo, o custo adicional de uma cultura de sobcobertura (e.g., Reino Unido) ou misturas de sementes para margens ou entre filas de árvores (e.g., Portugal, Espanha e Suíça), diminuiu a margem de lucro líquido, enquanto a utilização de menos pesticidas (e.g., França) aumentou a margem de lucro líquido devido ao efeito da poupança. Algumas práticas, como a gestão menos intensiva das pastagens nos Países Baixos, reduziram o rendimento devido à diminuição da produção (através da redução do uso de fertilizantes e da ceifa). Uma análise detalhada dos custos e benefícios pode ajudar a informar um agricultor sobre o custo líquido ou a poupança de uma determinada prática favorável à vida selvagem.

Apesar dos potenciais custos a curto prazo da implementação de práticas favoráveis à natureza, a longo prazo, o aumento da biodiversidade pode contribuir para uma maior resiliência, ajudando os agricultores a lidar melhor com problemas como condições meteorológicas extremas, pragas ou alterações climáticas. Se os custos dos recursos externos (como fertilizantes e pesticidas) aumentarem no futuro, as práticas favoráveis à natureza poderão tornar-se, na generalidade, mais rentáveis, uma vez que, frequentemente, dependem menos de recursos externos dispendiosos. Os efeitos das intervenções, tanto na biodiversidade como na produtividade, também dependem da quantidade de áreas naturais na paisagem circundante. Muitos benefícios dos terrenos agrícolas biodiversos podem demorar a manifestar-se, pelo que é importante avaliar os efeitos a longo prazo da agricultura amiga da natureza.

Apoyo político

Uma vasta gama de instrumentos políticos pode ajudar a apoiar a biodiversidade na agricultura. Na UE, duas políticas principais estabelecem as bases: as Diretivas Naturais da UE e a Política Agrícola Comum (PAC), que influencia cerca de 84 % das terras agrícolas da UE. Apesar disso, grande parte do potencial da PAC para apoiar a biodiversidade continua por explorar. No entanto, a última PAC inclui novas características denominadas por «ecoregimes» (regimes de pagamento que visam proteger o ambiente e o clima). Das 45 práticas propostas, 20 centram-se diretamente na biodiversidade, especialmente através da:

- Agroecologia (agricultura amiga da natureza, centrada nos processos naturais)
- Agrofloresta (combinação de árvores com outras culturas ou gado)
- Agricultura de elevado valor natural (agricultura de baixo consumo, com habitats ricos para a vida selvagem)

Algunas de nuestras EBA no se encontraban en la UE, y sus políticas equivalentes incluyen el Plan de Gestión Ambiental de Inglaterra y las Zonas de Promoción de la Biodiversidad y las Zonas de Compensación Ecológica de Suiza.

Receber apoio pela prática de uma agricultura amiga da natureza

Para os agricultores, e para as empresas agrícolas, a adoção de práticas favoráveis à biodiversidade, a redução da produtividade ou a redução da área de produção são frequentemente consideradas uma ameaça que reduz a «margem de manobra», a competitividade agrícola ou a viabilidade económica das explorações agrícolas. O projeto SHOWCASE mostra que os agricultores enfrentam custos financeiros e não financeiros ao implementar medidas de biodiversidade. Por exemplo, os agricultores podem ser afetados por:

- 🥮 Incerteza percebida, relacionada com a governança.
- Improdutividade.
- Falta de apoio.
- Carga administrativa.
- Remuneração insuficiente.
- Não conformidade social.

A projeto SHOWCASE constatou que os pagamentos compensatórios concedidos, por programas de políticas que apoiam práticas agrícolas favoráveis à biodiversidade, são extremamente importantes para os agricultores, uma vez que têm impacto nos resultados económicos das explorações agrícolas. Quando estes programas terminam, os agricultores enfrentam um impacte negativo imediato nos seus rendimentos, o que, por sua vez, dificulta a manutenção das medidas de biodiversidade. Os agricultores precisam de programas políticos cuidadosamente concebidos, estáveis e adequados que proporcionem Pagamentos por Serviços Ambientais (PSA) para compensá-los ou recompensá-los pela gestão da biodiversidade. No panorama político atual, esses pagamentos visam três áreas principais:

- 1 Tornar as explorações agrícolas intensivas mais favoráveis à biodiversidade.
- 2 Preservar sistemas menos intensivos em risco de abandono ou intensificação.
- 3 Manter ou restaurar habitats para a biodiversidade.

As abordagens baseadas em resultados estão a ganhar cada vez mais atenção, o que significa que os agricultores são pagos pelas melhorias reais na biodiversidade, e não apenas pela implementação de uma prática. Estas abordagens podem tornar as políticas mais eficazes, mas podem ser desafiantes na prática, especialmente porque as alterações climáticas afetam quando e onde as espécies podem estar ativas.

Fatores decisivos para a tomada de decisões dos agricultores

A participação de um agricultor em medidas e programas depende não só dos incentivos financeiros, mas também dos seus valores, da configuração da sua exploração, da comunidade em geral e do contexto paisagístico. O projeto SHOWCASE perguntou a 700 agricultores de toda a Europa o que os torna mais propensos a participar em programas e a tomar decisões favoráveis à biodiversidade. As quatro principais razões foram:

- 1 Cadeias alimentares solidárias: os agricultores são mais propensos a adotar medidas de biodiversidade quando fazem parte de sistemas alimentares solidários. Por exemplo, os «centros alimentares» locais podem reconectar agricultores e consumidores, divulgar produtos favoráveis à biodiversidade e ajudar a desenvolver mercados que recompensam a agricultura amiga da natureza.
- 2 Ligar habitats entre explorações agrícolas: muitos agricultores preocupam-se com a biodiversidade para além dos seus terrenos. No entanto, ligar habitats requer financiamento, não só para a implementação, mas também para a manutenção contínua. A atribuição de bónus de conectividade, para interligar habitats, pode aumentar o número de agricultores participantes e aumentar a eficácia das medidas, em termos de biodiversidade, através da conexão de habitats.

- Acesso a aconselhamento fiável: Os consultores independentes podem desempenhar um papel crucial para ajudar os agricultores a compreender e a implementar medidas para fomentar a biodiversidade. As lacunas de conhecimento, especialmente sobre como as ações levam a resultados reais em termos de biodiversidade, continuam a ser um obstáculo fundamental. O reforço dos serviços de aconselhamento e da partilha de conhecimentos entre agricultores podem melhorar a aceitação e a eficácia.
- Rótulos de biodiversidade e modelos de negócio: A maioria dos agricultores não é motivada apenas pela atribuição de rótulos de biodiversidade. No entanto, muitos estão interessados em modelos de negócio que façam sentido e utilizem indicadores de desempenho claros em matéria de biodiversidade. Os rótulos devem mostrar resultados claros, podendo o rótulo biológico da UE ser atualizado ou expandido de forma a refletir melhor os esforços de promoção da biodiversidade.

Desafios: desafios e lacunas de competências

Embora os resultados do projeto SHOWCASE em 10 países mostrem que a biodiversidade pode proporcionar serviços reais, como uma melhor polinização e fertilidade do solo, os agricultores continuam a enfrentar desafios, tais como custos mais elevados, complexidade, bem como riscos e incertezas. Estes desafios muitas vezes dissuadem os agricultores de fazer mudanças a longo prazo. Os agricultores que valorizam a biodiversidade pelo seu **valor intrínseco**, e não apenas pelos seus benefícios, são mais propensos a manter práticas para a promoção da biodiversidade a longo prazo. Ainda assim, muitos consideraram que lhes faltam as competências e os conhecimentos necessários para monitorizar a biodiversidade ou adaptar as práticas de forma eficaz, sendo necessário mais apoio.

O que precisa mudar?

Para melhorar a adoção de medidas para fomentar a biodiversidade, os incentivos devem ser mais bem adaptados ao destinatário. Isto significa cobrir os custos reais e, idealmente, ser competitivo com a agricultura comercial, reduzir a carga administrativa e oferecer **esquemas flexíveis e adaptados às condições locais**. Abordagens coletivas e baseadas em resultados podem melhorar a relação custo-eficácia e a aceitação, especialmente à escala da paisagem. A educação e a formação profissional, juntamente com indicadores claros e sistemas de monitorização, são essenciais para capacitar os agricultores e reforçar o papel da biodiversidade nos sistemas agrícolas futuros.

¿En qué medida pueden participar los agricultores?

Os cientistas trabalham com os agricultores de diferentes maneiras quando fazem investigação nas explorações agrícolas. O nível de envolvimento dos agricultores pode moldar a investigação e afetar as suas experiências. Aqui exploramos os diferentes níveis de envolvimento que os agricultores podem ter na conceção de experiências nas explorações agrícolas:

- Lideradas pelos agricultores: num extremo, existem experiências lideradas por agricultores, em que estes escolhem as questões de investigação, os métodos e o foco dos resultados. Os investigadores limitam-se a ajudar a executar o projeto e a aconselhar sobre como realizar uma boa experiência científica.
- Liderada pelos investigadores: No outro extremo da escala, existem experiências lideradas por investigadores. Neste caso, os cientistas decidem o que é testado e como, e para ajudar nisso, os agricultores são geralmente convidados a fornecer acesso aos seus terrenos e informações sobre a sua exploração agrícola.
- Concebido em conjunto: No meio, encontram-se as experiências concebidas em conjunto, com agricultores e investigadores (e, por vezes, outros) a trabalharem em conjunto para escolher as questões, os métodos, o local mais adequado para as experiências e o foco dos resultados (Figura 4).

Quais são as vantagens e as desvantagens?

Cada uma destas opções tem as suas próprias vantagens e desvantagens:

- Os projetos liderados por agricultores geralmente testam novas ideias agrícolas que são práticas e fáceis de aplicar nas explorações, num contexto real.
- Os projetos liderados por investigadores testam frequentemente práticas apoiadas pela ciência, enquanto expandem os limites com novos métodos e ferramentas.
- Os projetos co-concebidos podem ser demorados e, por isso, dispendiosos se houver muita discussão entre todos os envolvidos, mas permitem a aprendizagem partilhada e podem construir parcerias fortes e duradouras, bem como impulsionar a ciência e as práticas agrícolas em novas direções, combinando duas bases de conhecimento diferentes.

Figura 4: Discussões entre cientistas e agricultores para co-conceber investigação na exploração agrícola (em cima, foto de Amelia Hood) e um workshop participativo com agricultores e técnicos agrícolas da Guadalquivida EBA (em baixo, foto de Curro Molina).

Fazer com que funcione para os agricultores

Para os agricultores, é muito importante que a sua voz seja ouvida na definição da investigação agrícola, o que pode constituir um desafio para experiências lideradas por agricultores ou concebidas em conjunto com estes. Por este motivo, pode ser mais vantajoso adotar abordagens diferentes em momentos diferentes. A melhor opção para um agricultor pode depender de:

- O que o agricultor pretende alcança
- Quanto tempo o agricultor tem
- Que recursos estão disponíveis.
- A sua rede de agricultores e parceiros

O que descobrimos

No projeto SHOWCASE, realizámos uma série de experiências, desde as lideradas por investigadores até às lideradas por agricultores, e cada uma delas proporcionou aos agricultores uma experiência diferente. Mas porquê ouvir-nos a nós? Ouça diretamente os agricultores em baixo (**Figura 5**).

Quando concebemos estes projetos em conjunto com os agricultores, desenvolvemos princípios comuns para obter os melhores resultados e evitar problemas. Por exemplo, é muito útil trabalhar com alguém em quem os agricultores já confiam, como um consultor agrícola local ou um grupo de agricultores. Eles podem ajudar a construir boas relações para uma investigação duradoura. No entanto, pode ser difícil encontrar um consultor justo e fiável, porque estes serviços são diferentes em cada região e país.

Outra forma de participar

Outra forma de se envolver em pesquisas em fazendas é por meio da **ciência cidadã**. Leia o estudo de caso da Suécia (p. 81) para saber mais.

Juntei-me para melhorar a estrutura do solo... e vi um aumento no número de minhocas. Tem sido muito interessante.

> Juntei-me para obter melhores dados... e conselhos realistas... e hoje vi o que esperava em termos de dados concretos e gráficos.

Vim para cá com a ideia de que seria visto como a ovelha negra. Este projeto orientou-me mais para a agricultura regenerativa. Teve um grande impacto na produção e nos planos para o futuro.

Entrei para aprender a capitalizar a biodiversidade para melhorar o nosso modelo agrícola... e valorizei muito a experiência ecológica da equipa do CSIC... A quantificação da biodiversidade foi importante para mim, para apoiar algumas das ações tomadas e para motivar os colegas menos motivados a implementar este tipo de soluções baseadas na natureza

Juntei-me ao projeto para mudar a forma como cultivamos e torná-la mais respeitosa com a biodiversidade... e a experiência deu-me o impulso para mudar algumas práticas que herdei do meu pai, mas que queria atualizar. O meu objetivo era fazer algo que tivesse um efeito positivo na biodiversidade e isso foi alcançado com sucesso.

Eu só queria ajudar os investigadores. Achei que era uma coisa boa a fazer. Estava interessado em experimentar algo que pudesse ser positivo e receber uma compensação... e o projeto de investigação correu muito bem. Foi uma cooperação muito agradável.

Figura 5: Citações de agricultores europeus envolvidos em diferentes tipos de investigação agrícola: liderada por investigadores, liderada por agricultores, e concebida em conjunto por ambos.

O projeto SHOWCASE apresenta algumas abordagens gerais para apoiar a biodiversidade nas terras agrícolas. Como cada exploração agrícola é diferente, estas não são regras rígidas, mas sim ideias flexíveis que podem ser adaptadas a diferentes explorações, paisagens e culturas.

Listámo-las por ordem geral de impacto na biodiversidade. A primeira traz os maiores ganhos, mas muitas vezes vem acompanhada das maiores desvantagens. As outras também ajudam e, quando combinadas, podem ser práticas e fazer uma diferença real (**Figura 6**).

1. Reservar terras para a biodiversidade

A forma mais eficaz de melhorar a biodiversidade nas explorações agrícolas é dedicar alguma terra exclusivamente à natureza. Isto pode significar:

- Deixar ou restaurar uma variedade de habitats naturais, como faixas ao longo dos campos (e.g., EBA suíça e húngara) ou entre filas de árvores (e.g, EBA espanhola e portuguesa), lagoas, matagais, bermas de estradas, pastagens, bosques ou zonas húmidas.
- **Gerir áreas selvagens** com pastoreio (e.g, EBA da Estónia e da Roménia), corte, queima, sementeira de flores silvestres (e.g, EBA da Hungria) ou remoção de ervas daninhas invasivas.
- Restaurar terrenos agrícolas de má qualidade para uso a longo prazo e resiliência, convertendo-as numa parte saudável e funcional da paisagem, como pastagens permanentes, zonas húmidas ou bosques naturais.

Mesmo pequenas áreas ajudam, especialmente quando estão interligadas. Os habitats interligados (com sebes, faixas de plantas herbáceas ou arbóreas) facilitam a deslocação da vida selvagem pela paisagem.

2. Cultivar de forma menos intensiva

A segunda melhor forma de melhorar a biodiversidade nas explorações agrícolas é reduzir a intensidade da aplicação de recursos externos e a mobilização do solo. Pode:

- Usar menos fertilizantes e pesticidas (e.g., EBAs francesas e suíças).
- 🥮 Experimentar sistemas de lavoura mínima ou sem lavoura (e.g., EBA francesa).
- Reduzir a intensidade da gestão (e.g., EBA holandesa).
- Adicionar composto ou estrume para alimentar a vida do solo.

Estas práticas protegem os polinizadores, as minhocas e os predadores naturais de pragas, e também podem recuperar a saúde do solo ao longo do tempo.

3. Aumente a diversidade

Cultivar de forma mais natural significa misturar as coisas. Pode tentar:

- Cultivo intercalar ou culturas de sobcobertura (e.g., EBA do Reino Unido)
- Rotações de culturas mais longas e variadas
- 🧶 Cultivar árvores juntamente com culturas ou gado (agrofloresta)

Sistemas diversificados são frequentemente mais resistentes a pragas, doenças e condições meteorológicas extremas, e podem aumentar a biodiversidade acima e abaixo do solo.

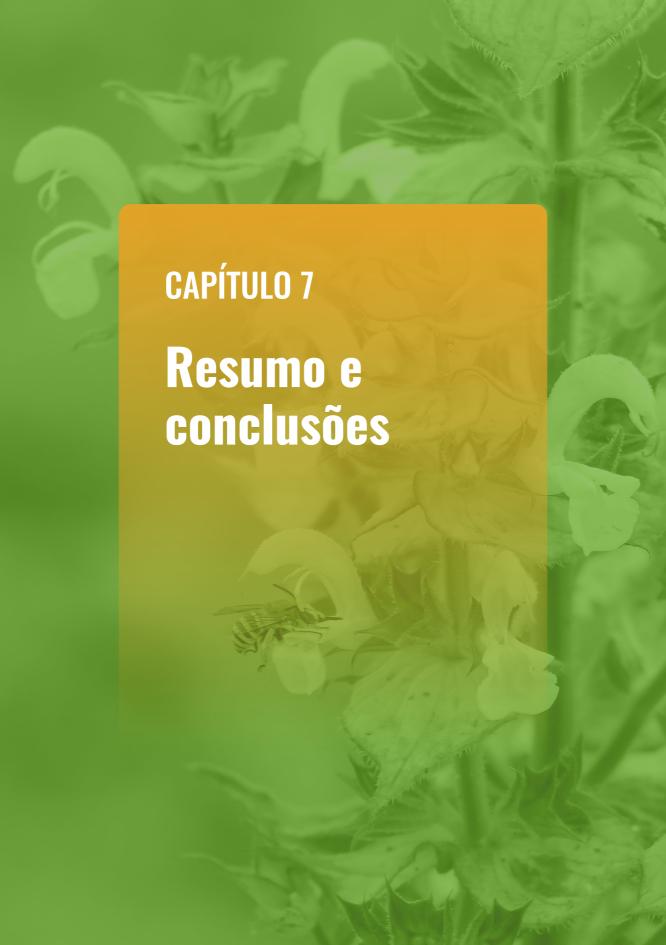
4. Apoiar mudanças mais amplas

A agricultura amiga da natureza não se resume a explorações agrícolas individuais.

- Mantenha intactas as áreas naturais próximas: evite destruir florestas, zonas húmidas ou pastagens.
- Monitorize o que está a funcionar: acompanhe as alterações no solo, nas pragas ou nas aves. Por exemplo, desenvolvemos a aplicação InsectsCount da Fundação para a Investigação Agrícola para permitir que possa monitorizar os insetos que visitam as flores.
- Celebre o conhecimento local: a agricultura em harmonia com a natureza pode proteger tradições, apoiar a saúde mental e conectar comunidades.
- Conecte-se com outras pessoas: troque estratégias, ideias, apoio e conhecimento (algumas EBAs do projeto SHOWCASE servem como centros de partilha de conhecimento local e nacional (e.g., EBAs romenas e estonianas), e algumas atuam como explorações agrícolas de demonstração).

Ajuda disponível:

- Subsídios, programas nacionais, grupos liderados por agricultores e consultores locais podem orientar e apoiar as mudanças.
- Trabalhar em conjunto com vizinhos, decisores políticos e investigadores cria confiança e progresso partilhado.


Não existe um método único para a agricultura amiga da natureza. Mas estes princípios gerais fornecem um conjunto de **ideias flexíveis e prioritárias** que podem ser adaptadas para se adequar a **diferentes explorações agrícolas, regiões e necessidades**. Pode:

- Começar em pequena escala e adaptar à medida que avança
- Combinar abordagens dependendo da sua exploração agrícola e dos seus objetivos
- Recorra ao apoio nacional ou local para começar

A agricultura favorável à biodiversidade funciona melhor para os agricultores quando é construída em conjunto com eles, apoiada por políticas, enraizada na cultura local e ligada a boas informações e a financiamento. Ao combinar estas quatro estratégias, de uma forma que se adapte a cada exploração agrícola, a agricultura pode apoiar a biodiversidade de uma forma prática e rentável.

Gerir a terra para a natureza Preservar, restaurar ou gerir áreas naturais Cultivar de forma menos intensiva Reduzir a utilização de recursos externos e a mobilização do solo Aumentar a diversidade Rotações de culturas mais longas e variadas, culturas de sob cobertura ou agrossilvicultura Apoiar mudanças mais amplas Evitar fragmentar áreas naturais na paisagem, recorrer a apoios e monitorizar o progresso

Figura 6: Uma pirâmide que mostra quatro estratégias gerais para apoiar a biodiversidade nas explorações agrícolas. O topo da pirâmide representa as ações com maior impacte na biodiversidade, que também podem envolver maiores compromissos em termos de disponibilização de terrenos produtivos. Os níveis inferiores incluem estratégias mais fáceis de adotar e menos dispendiosas, mas com impactes individuais menores. As quatro estratégias são flexíveis e complementares, e uma combinação de cada uma delas pode ser escolhida com base nos objetivos, contexto e capacidade de cada exploração agrícola. A combinação de várias abordagens traz, frequentemente, os maiores benefícios globais, tanto para a biodiversidade como para a resiliência a longo prazo das explorações agrícolas.

A biodiversidade nas explorações agrícolas é constituída por todos os seres vivos dentro do ecossistema de uma exploração agrícola, e as formas complexas como estes interagem. Isto inclui abelhas e aves, plantas silvestres e organismos saudáveis do solo, muitos dos quais são vitais para sistemas agrícolas fortes e sustentáveis. O projeto SHOWCASE foi concebido para apoiar uma agricultura favorável à biodiversidade que se mantenha produtiva e rentável.

Em 11 áreas experimentais de biodiversidade, localizadas em 10 países, o projeto SHOWCASE trabalhou com agricultores para testar diferentes práticas, como plantar faixas de flores, reduzir o uso de pesticidas e cultivar culturas de sobcobertura. Esses ensaios foram cuidadosamente monitorizados para averiguar como afetam a biodiversidade e, em alguns casos, o rendimento das culturas e o lucro.

A agricultura amiga da natureza ajudou a aumentar a biodiversidade em todos os países estudados. Na maioria dos casos, o rendimento das culturas manteve-se igual, exceto quando a aplicação de recursos externos, como fertilizantes ou pesticidas, foi grandemente reduzida. O efeito de cada ensaio nos lucros foi geralmente, mas nem sempre, negativo e dependeu do custo do método utilizado.

O projeto SHOWCASE descobriu que as principais motivações dos agricultores para adotar práticas favoráveis à biodiversidade incluem:

- O acesso a aconselhamento fiável
- Fazer parte de um sistema alimentar solidário
- Receber pagamentos que cobrem os custos da gestão favorável à biodiversidade
- Trabalhar com outros agricultores ou especialistas

Alguns agricultores foram inspirados por valores pessoais, outros por benefícios práticos, como o controlo de pragas, a obtenção de solos melhores ou a procura do mercado.

Para ser amplamente adotada, a agricultura amiga da natureza deve ser prática e viável, aumentando os benefícios da biodiversidade no apoio à polinização, ao controlo de pragas e à saúde do solo, enquanto minimiza os custos em tempo, energia, rendimento e lucro. A verdadeira integração destas práticas requer uma compreensão clara das vantagens e desvantagens e dos desafios reais que os agricultores enfrentam. De modo geral, o projeto SHOWCASE concluiu que, com o apoio adequado, em particular o apoio financeiro aos agricultores, a agricultura integrada com a com biodiversidade pode tornar-se a norma e beneficiar a todos.

Glossário

Biodiversidade – A variedade de seres vivos (plantas, animais e fungos). Uma boa variedade, ou alta biodiversidade, melhora a saúde do solo, a polinização das culturas e fortalece os ecossistemas agrícolas.

Co-design – Trabalhar em conjunto (agricultores, investigadores e outros parceiros) para planear e testar práticas agrícolas. Todos contribuem com os seus conhecimentos e as decisões são tomadas em conjunto para garantir que as soluções são práticas, úteis e adaptadas à exploração agrícola.

Campo de controlo – Um campo que é gerido da mesma forma que o campo experimental, mas sem a nova prática a ser testada. Isto ajuda-nos a ver se a nova prática está realmente a fazer diferença ou não.

Área Experimental de Biodiversidade (EBA) — Uma comunidade de agricultores, extensionistas, investigadores, ONG e cidadãos que trabalham em conjunto para testar e melhorar ideias para aumentar a biodiversidade, reforçar a produtividade agrícola e tornar os sistemas agrícolas mais respeitadores da natureza. O projeto SHOWCASE tem uma rede de 11 EBAs em 10 países da Europa.

Agricultura intensiva – Agricultura que utiliza altos níveis de recursos externos e tecnologia para maximizar o rendimento por área de terreno. O objetivo é aumentar a produção de forma eficiente para satisfazer a procura alimentar. O oposto da agricultura intensiva é por vezes referido como «agricultura extensiva». Para maior clareza, referimo-nos a esta como «menos intensiva».

Agricultura amiga da natureza – Uma abordagem poderosa que inclui uma variedade de métodos para apoiar a biodiversidade, mantendo ou mesmo aumentando a produção através de práticas baseadas na ciência.

Resiliência – A capacidade de uma exploração agrícola para lidar com desafios como as condições meteorológicas extremas, as pragas, as alterações de preços ou as doenças. Uma exploração agrícola resiliente consegue recuperar de contratempos, adaptar-se às mudanças e continuar a produzir alimentos e rendimentos ao longo do tempo.

Projeto SHOWCASE – Centra-se na integração da biodiversidade na agricultura quotidiana, ajudando os agricultores a compreender o seu valor prático. Explora como os pagamentos, o aconselhamento e a regulamentação podem apoiar a biodiversidade nas explorações agrícolas e testa formas de implementar uma agricultura favorável à biodiversidade.

Ensaio – Uma prática favorável à biodiversidade testada em parte de uma exploração agrícola para ver como afeta a natureza, o rendimento ou os custos em comparação com a agricultura habitual.

Recursos adicionais e leituras adicionais

showcase-project.eu

living-fields.eu

Colaboradores, Créditos e agradecimentos

Charlotte Howard¹, Ignasi Bartomeus², Vincent Bretagnolle³, Nuria Chamorro⁴, Amelia Hood¹, Maria Lee Kernecker⁵, David Kleijn⁶, Alice Mauchline¹, Lena Schaller⁷, Simon Potts¹

- ¹University of Reading, United Kingdom
- ² Estación Biológica de Doñana, Spain
- ³ Centre d'Études Biologiques de Chizé, Centre National pour la Recherche Scientifique (CNRS), France
- ⁴ Scienseed, Spain
- ⁵ Leibniz Centre for Agricultural Landscape Research, Germany
- ⁶ Wageningen University & Research, Netherlands
- ⁷ University of Natural Resources and Life Sciences, Vienna (Universität für Bodenkultur Wien), Austria

Agradecimentos

Somos profundamente gratos a todos que contribuíram para este trabalho. Agradecemos aos agricultores, agrônomos, representantes de ONGs e políticas, e a todos os outros cuja expertise e colaboração tornaram este projeto um sucesso.

Design e ilustrações

Pensoft, Bulgaria

Estudos de caso

Comparando práticas agrícolas agroecológicas e 39 convencionais na Suíça O pastoreio é bom para os besouros terrestres, mas não para outros artrópodes do solo no agroecossistema costeiro da Estónia Impulsionar a biodiversidade de insetos em pomares de 50 frutos de caroço espanhóis As experiências agroecológicas com agricultores para reduzir a intensidade 55 das práticas agrícolas não tiveram efeito sobre os rendimentos, mas tiveram efeitos positivos sobre a biodiversidade e as margens brutas Flores silvestres em ação: como as intervenções ecológicas aumentam o 61 rendimento e a biodiversidade nas explorações agrícolas na Hungria 66 A agricultura para a biodiversidade nas pastagens pode ser rentável? Diminuir o impacto da intensificação da produção agrícola na 71 biodiversidade dos olivais mediterrânicos É necessária uma cobertura de pelo menos 10% de arbustos para 76 manter a biodiversidade de borboletas nas pastagens romenas. Voluntariado para a biodiversidade nas terras agrícolas -81 ganhe apoio, aprenda e faça a diferença As culturas de cobertura de inverno promovem a saúde do solo 87 nos sistemas aráveis do Reino Unido

Este estudo de caso examina os efeitos das práticas agroecológicas em comparação com a agricultura convencional em campos agrícolas suíços, como parte do projeto SHOWCASE. Monitorizámos a biodiversidade, o rendimento das culturas e os *inputs* agronómicos para compreender o compromisso entre o aumento da biodiversidade e o rendimento. Os campos agroecológicos (trigo, cevada e colza), que empregam faixas de flores silvestres, uso reduzido de pesticidas e controlo mecânico de infestantes, apresentaram uma biodiversidade significativamente maior, particularmente de aranhas e abelhas. No entanto, os rendimentos nesses campos foram geralmente mais baixos do que nos campos convencionais, que mantiveram rendimentos mais elevados devido aos *inputs* químicos. Embora as práticas agroecológicas beneficiem claramente a biodiversidade, elas apresentam desafios na manutenção de produções competitivas, enfatizando a necessidade de apoio direcionado aos agricultores.

O desafio

A crescente preocupação com os impactes ambientais das práticas agrícolas convencionais, tais como a perda de biodiversidade, a poluição e a degradação do solo, levou a um interesse crescente pelos sistemas agroecológicos. Estes sistemas enfatizam a conservação da biodiversidade, a redução dos *inputs* químicos e os serviços de ecossistemas, como o controlo de pragas, que apoiam a produtividade a longo prazo. No entanto, o equilíbrio entre os ganhos em biodiversidade e a manutenção do rendimento das culturas permanece incerto.

A EBA suíça

O projeto SHOWCASE visa demonstrar soluções baseadas na natureza para a agricultura sustentável em toda a Europa através da criação de Áreas Experimentais de Biodiversidade (EBAs). Estas EBAs promovem a colaboração entre agricultores e investigadores. Na Suíça, as EBAs fazem parte do projeto PestiRed, que visa reduzir o uso de pesticidas em pelo menos 75%, mantendo a produtividade das culturas (<10% de perdas de rendimento) através de intervenções agroecológicas, tais como faixas de flores silvestres, sementeira por baixo (quando uma segunda cultura, muitas vezes uma cultura de cobertura como trevo ou erva, é semeada numa cultura principal existente) e controlo mecânico de infestantes.

A nossa abordagem

A agroecologia integra princípios ecológicos nas práticas agrícolas para promover a biodiversidade e os serviços dos ecossistemas, como a regulação natural de pragas, ao mesmo tempo que reduz os *inputs* químicos sintéticos. Na Suíça, a gestão agroecológica

tem-se centrado na promoção da diversidade de habitats e na utilização de métodos de controlo biológico e mecânico para garantir o rendimento das culturas.

Neste estudo, os campos agroecológicos (Figura 1) implementaram várias intervenções importantes:

- Redução do uso de pesticidas: Não foram aplicados pesticidas (fungicidas, herbicidas ou inseticidas) nos campos agroecológicos. Em vez disso, os agricultores recorreram à remoção mecânica de ervas daninhas e à gestão do solo para controlar ervas daninhas e pragas.
- Faixas de flores silvestres: introduzidas nas margens dos campos, estas faixas promoveram a biodiversidade de plantas e artrópodes, proporcionando habitat para espécies benéficas, como aranhas e abelhas.
- Intervenções mecânicas: Os campos agroecológicos utilizaram frequentemente métodos mecânicos, incluindo variedades de culturas adaptadas e técnicas de sementeira de cobertura, para controlar as ervas daninhas e manter a saúde do solo.

Figura 1: Um exemplo de um campo sob gestão agroecológica com uma faixa de flores silvestres, na EBA suíça. Foto de Vincent Sonnenwyl.

Em contrapartida, os campos convencionais utilizavam *inputs* químicos, incluindo pesticidas e fertilizantes azotados, para manter a produtividade. Uma análise simples mostrou que os campos convencionais eram caracterizados por uma maior aplicação de pesticidas, enquanto os campos agroecológicos tendiam a ter intervenções mecânicas mais frequentes.

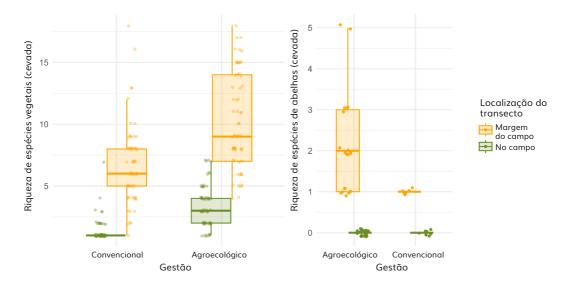
A recolha de dados padronizada centrou-se na biodiversidade e nos parâmetros agronómicos em 22 campos emparelhados em toda a Suíça. As avaliações incluíram monitorização de aranhas e abelhas selvagens, levantamentos da vegetação e medições do rendimento. Os predadores e as pragas foram amostrados utilizando armadilhas de queda, redes de varredura e sucção a vácuo, para avaliar a abundância e diversidade das espécies.

Foi seguida uma abordagem de co-desenho entre agricultores e cientistas para conceber e implementar as intervenções agroecológicas, e monitorizar os seus impactos. Isto envolveu workshops regulares e entrevistas com os agricultores.

O que descobrimos

BENEFÍCIOS PARA A BIODIVERSIDADE

Os campos agroecológicos demonstraram uma biodiversidade significativamente maior, particularmente na riqueza de espécies vegetais e nas populações de invertebrados, em comparação com os campos convencionais (Figura 2). As faixas de flores silvestres nos campos agroecológicos aumentaram consideravelmente a diversidade da vegetação, proporcionando condições favoráveis para artrópodes benéficos, como aranhas e abelhas e abelhas. No entanto, esses ganhos de biodiversidade variaram conforme o tipo de cultura e as práticas de gestão.


A gestão agroecológica aumentou significativamente a riqueza de espécies vegetais. A riqueza de espécies vegetais foi consistentemente maior nas margens dos campos, tanto nos campos agroecológicos com faixas de flores silvestres quanto nos campos convencionais com vegetação ruderal.

As populações de abelhas eram escassas nos campos de cereais e colza e quase totalmente dominadas por abelhas melíferas (Apis mellifera). No entanto, a análise gráfica mostrou que as faixas de flores silvestres nos campos agroecológicos proporcionavam habitats essenciais para as abelhas selvagens, destacando a sua eficácia no apoio às comunidades de polinizadores.

Não se observou um efeito significativo da gestão agroecológica na abundância ou riqueza de espécies de aranhas. No entanto, as aranhas foram mais abundantes e diversas nas margens com flores silvestres, incluindo faixas de flores silvestres em campos agroecológicos e vegetação ruderal em campos convencionais. Isso indica que as margens dos campos desempenham um papel crucial no apoio à diversidade de aranhas.

COMPROMISSOS EM TERMOS DE RENDIMENTO

Os campos convencionais produziram consistentemente rendimentos mais elevados em todas as culturas estudadas, com rendimentos 17,9% mais elevados na colza, 8,1% no trigo e 10,6% mais elevados na cevada (Figura 3). O teor de proteína foi superior em 8,8% nos campos convencionais, afetando particularmente a qualidade do trigo. A diferença no rendimento foi impulsionada principalmente pela aplicação de pesticidas nos campos

Figura 2: Riqueza de espécies de plantas (à esquerda) e abelhas (à direita) em campos de cevada (verde) e margens de flores silvestres (amarelo, faixas de flores vs. faixas de controlo nas margens de campos convencionais). Os pontos representam a amostragem (o número de espécies por parcela, ocasião da amostragem e exploração agrícola).

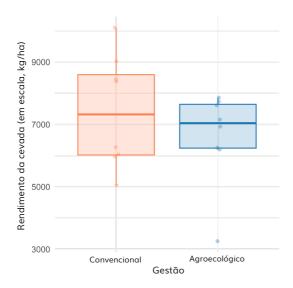


Figura 3: Rendimento da cevada (kg/ha) conforme relatado pelos agricultores. Os pontos vermelhos representam o rendimento em campos convencionais e os azuis em campos agroecológicos.

convencionais, enquanto as intervenções mecânicas nos campos agroecológicos contribuíram para a redução dos rendimentos.

CO-CONCEÇÃO

Entrevistas com três agricultores indicaram que o processo de coconceção com cientistas foi percebido de forma positiva. Os agricultores enfatizaram que tais colaborações deveriam ser mais frequentes intensas. A intervenção com faixas de flores silvestres foi unanimemente considerada benéfica biodiversidade, embora o seu impacto no rendimento das culturas não tenha sido favorável. A intervenção com sob sementeira foi considerada vantaiosa para a biodiversidade, mas o seu efeito no rendimento foi misto, com resultados variados em diferentes contextos.

Quais são as implicações

BIODIVERSIDADE E SERVIÇOS DOS ECOSSISTEMAS

As práticas agroecológicas podem oferecer benefícios significativos para a biodiversidade, particularmente para aranhas e abelhas selvagens. No entanto, esses ganhos em biodiversidade nem sempre se traduzem em redução da pressão de pragas ou rendimentos mais elevados. Os agricultores podem precisar de apoio adicional, como incentivos financeiros ou assistência técnica, para otimizar os benefícios do controlo de pragas provenientes da biodiversidade.

PREOCUPAÇÕES COM O RENDIMENTO

A diferença de rendimento entre os sistemas convencionais e agroecológicos continua a ser um desafio. Os agricultores em transição para métodos agroecológicos precisarão equilibrar as vantagens e desvantagens entre a redução dos *inputs* químicos e a manutenção do rendimento das culturas. Os programas agroambientais podem ajudar a colmatar esta lacuna, oferecendo compensação financeira ou assistência técnica para minimizar a perda de rendimento e, ao mesmo tempo, promover a biodiversidade.

IMPLICAÇÕES POLÍTICAS

Os decisores políticos devem promover práticas agroecológicas como parte de uma estratégia mais ampla para a agricultura sustentável. As políticas devem ser flexíveis, de forma a ter em conta as condições locais, e devem apoiar os agricultores com ferramentas para monitorizar a biodiversidade e gerir eficazmente as pragas. Políticas adaptadas ajudarão a otimizar tanto a biodiversidade como os resultados em termos de rendimento.

O pastoreio é bom para os besouros terrestres, mas não para outros artrópodes do solo no agroecossistema costeiro da Estónia

Aki Kadulin, Mylene Martinez e Indrek Melts

A Área Experimental de Biodiversidade (EBA) da Estónia incluiu pastagens costeiras criadas através da atividade agrícola tradicional. No entanto, devido às mudanças nas condições socioeconómicas, a gestão de muitos desses habitats foi abandonada. Na EBA da Estónia, estudámos os efeitos do pastoreio e do abandono nos artrópodes que vivem no solo (invertebrados com cutículas e corpos segmentados), nessas pastagens. Encontrámos algumas espécies de macro e microartrópodes anteriormente não registadas em áreas pastoreadas e demonstramos que, em geral, o pastoreio aumentou a abundância de artrópodes. No entanto, os habitats costeiros arborizados e abandonados abrigavam espécies especialistas e outros tipos de artrópodes que vivem no solo. Concluímos que tanto os habitats abandonados como os arborizados devem ser preservados para fomentar os artrópodes, e a biodiversidade em geral, nas paisagens costeiras da Estónia

O desafio

A área de pastagens seminaturais diminuiu consideravelmente na Estónia ao longo do último século, principalmente devido à mudança no uso do solo. A agricultura nesta área é caracterizada principalmente pela produção agrícola e pecuária, e as pastagens costeiras secundárias dependem de práticas de gestão contínuas, como corte e pastoreio. A atividade agrícola contínua é crucial para manter a biodiversidade, bem como para fornecer uma ampla variedade de serviços dos ecossistemas. A persistência destas pastagens costeiras secundárias depende, em parte, do apoio financeiro aos agricultores do programa agroambiental da Estónia através da Política Agrícola Comum (PAC). Ao abrigo deste programa, os agricultores devem limpar a terra de árvores e arbustos, pastorear com baixa pressão, cortar as plantas herbáceas tardiamente e frequentar cursos de formação. A maior parte da gestão é realizada através do pastoreio, especialmente em áreas como as pastagens secundárias costeiras, pois melhora a biodiversidade de plantas, aves e anfíbios. No entanto, faltam conhecimentos sobre as melhores práticas de gestão nestas pastagens para outros aspetos importantes da biodiversidade, como os artrópodes associados ao solo.

A EBA da Estónia

A Área Experimental de Biodiversidade (EBA) da Estónia está localizada na costa oeste e sudoeste da Estónia continental, junto ao Mar Báltico, nos condados de Pärnu e Lääne, cobrindo cerca de 300 km da costa estónia.

A vegetação é caracterizada por cordões de praias arenosas, dunas e zonas húmidas, vastas áreas de pradarias costeiras, várzea e canaviais. O local é também rico em outros habitats seminaturais com elevada biodiversidade, tais como pinhais, florestas boreais secas e florestas mistas de abetos e árvores de folha caduca. Muitas destas áreas de

elevado valor natural estão protegidas e a sua gestão deve seguir regulamentos e restrições específicos.

A nossa abordagem

Os agricultores que participam no EBA da Estónia foram selecionados com base na sua cooperação com o Conselho Ambiental da Estónia, uma instituição governamental responsável pela gestão de habitats seminaturais nas áreas protegidas e nas áreas da rede NATURA 2000. Comparámos locais sujeitos a uma intervenção de gestão de pastagem com locais de controlo não pastoreados, em habitats costeiros abandonados cobertos por juncos, arbustos e/ou árvores. Dez agricultores participaram na conceção conjunta da intervenção através de discussões gerais e, em 2021, foram realizadas experiências no terreno em 10 campos de intervenção, e comparadas com 10 campos de controlo. Foram analisados diferentes parâmetros de biodiversidade (e.g., plantas, artrópodes associados ao solo) para determinar os impactos do pastoreio e do abandono, em duas regiões paisagísticas diferentes (Figura 1).

Figura 1: Um exemplo de uma pastagem secundária costeira com a maior diversidade de besouros terrestres (em cima) e pastagens secundárias costeiras com a maior diversidade de aranhas (em baixo). Fotos de Indrek Melts.

O que descobrimos

Em 2021, 56 espécies de besouros terrestres (mais de 15% de toda a fauna de besouros terrestres da Estónia) e 63 espécies de aranhas (mais de 10% das aranhas da Estónia) foram recolhidas e identificadas, utilizando o método de armadilha de queda. Também foram recolhidas amostras de solo e, utilizando *Tullgren-Berlese*, extraímos artrópodes associados ao solo. Entre os artrópodes estudados, encontrámos muitos novos registos para os agroecossistemas costeiros da Estónia, incluindo espécies de aranhas, escaravelhos e microartrópodes do solo (Sammet et al. 2023)¹ por exemplo, a aranha *Talavera thorelli* e o escaravelho *Diachromus germanus* (Figura 2). Muitos dos novos registos foram encontrados em áreas abandonadas e arborizadas. A maioria dos microartrópodes são espécies amplamente distribuídas, mas existem lacunas significativas no conhecimento sobre microartrópodes (Sammet et al. 2023¹). A presença de algumas novas espécies (e.g., *Agroeca dentigera, Rugathodes instabilis*) nos habitats costeiros da Estónia pode indicar mudanças na distribuição devido às alterações climáticas.

Figura 2: Vista dorsal de *Diachromus germanus* recolhido na área de árvores cortadas na pastagem secundária costeira (Sammet et al. 2023)². Foto de Olavi Kurina.

O pastoreio beneficiou os besouros e as aranhas nas pastagens, conforme indicado pela maior riqueza de espécies para ambos os taxa (Figura 3, em cima). No entanto, os habitats abandonados e arborizados abrigavam conjuntos únicos de besouros e aranhas que também prestam importantes serviços dos ecossistemas (ciclo de nutrientes). Além disso, os habitats abandonados e arborizados preservaram outros artrópodes associados ao solo (Figura 3, em baixo).

As pradarias abertas e pastoreasas eram habitadas por espécies mais generalistas de besouros e aranhas (ou seja, aquelas que ocorrem numa

ampla variedade de habitats e possuem variadas dietas), com tamanhos corporais menores, e maior tendência a voar. Os habitats abertos eram habitados por comunidades de artrópodes altamente diversificadas, acima do solo. Em contrapartida, os habitats costeiros abandonados e arborizados eram habitats importantes, abrigando espécies especialistas de besouros terrestres e aranhas. Os habitats abandonados e arborizados nas zonas costeiras também podem oferecer condições ambientais estáveis, essenciais para a conservação de organismos do solo menos móveis.

¹ Sammet et al. 2023: https://checklist.pensoft.net/article/111005/

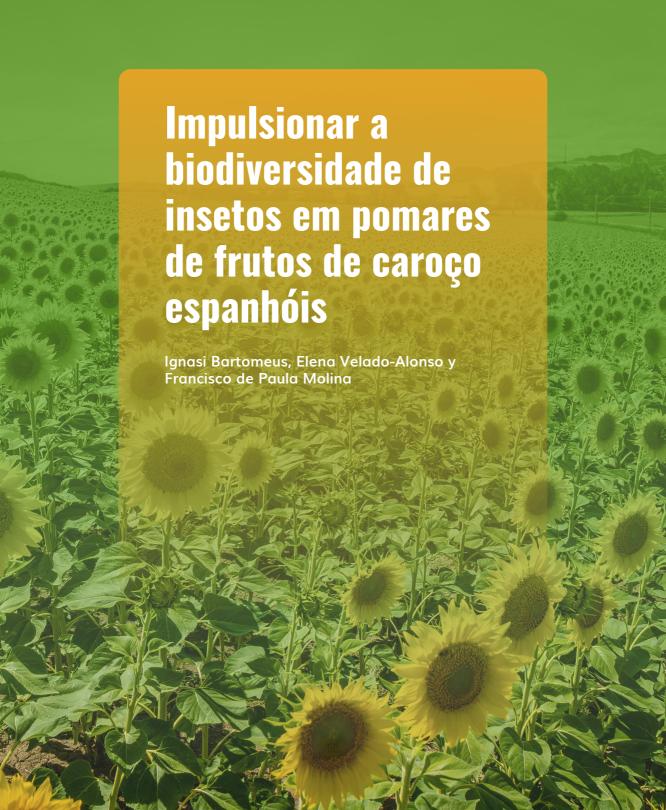

² Sammet, K., Martinez, M.R., Tali, K. e Melts, I., 2023. Novos registos de artrópodes dos habitats prioritários Natura 2000, nas zonas costeiras da Estónia. Check List, 19(6), pp.1029–1048.

Figura 3: Riqueza de espécies de escaravelhos (traço longo pontilhado) e aranhas (linha de pontos redondos), em locais pastoreados (intervenção) e locais de controlo (em cima); e abundância média de artrópodes do solo (*Diplopoda* - cruz de São André e Isopoda - cruz) (em baixo) em locais pastoreados (intervenção) e locais de controlo, nos habitats costeiros da Estónia em 2021. São apresentadas duas regiões dentro da EBA: o Golfo da Livónia e a planície ocidental da Estónia.

Quais são as implicações

É crucial dar prioridade aos habitats arborizados e abandonados nos agroecossistemas costeiros para fomentar espécies especialistas de artrópodes, devido à sua vulnerabilidade a perturbações. O principal desafio é a pressão para adoptar uma gestão mais intensiva e a redução dos elementos da paisagem natural. Árvores, arbustos e outros elementos paisagísticos que não são geridos ativamente contribuem para a diversidade paisagística, mas atualmente estão excluídos das áreas elegíveis para atribuição de subsídios. No entanto, esta prática está a começar a mudar. Ao mesmo tempo, práticas de gestão sustentável, incluindo períodos de pousio ou gestão rotativa, também poderiam contribuir para a manutenção de paisagens diversificadas e da biodiversidade geral nos agroecossistemas costeiros da Estónia.

Trabalhámos com produtores de frutos de caroço numa zona agrícola de alta intensidade para encontrar formas de melhorar a biodiversidade sem reduzir o rendimento das culturas. Testámos a utilização de cobertura floral entre as árvores. A cobertura floral ajudou a aumentar o número de plantas, polinizadores, aranhas e outros insetos benéficos, como predadores e vespas parasitoides (vespas que, por vezes, matam pragas depositando os seus ovos dentro ou sobre a praga, que serve de «hospedeira» para as crias se alimentarem). Os agricultores não perderam a produção de frutos. Na verdade, muitos deles gostaram tanto da cobertura semeada que a mantiveram após o término da nossa experiência.

O desafio

Os pomares de frutos de caroço têm frequentemente solo nu nas áreas não produtivas entre as filas de árvores. Os agricultores temem que estas faixas entre as linhas de árvores possam favorecer o crescimento de plantas herbáceas e pragas de insetos, pelo que utilizam herbicidas para remover as plantas herbáceas, e inseticidas para reduzir as pragas nas árvores. No entanto, não há evidências claras de que as faixas sem plantas herbáceas reduzam as pragas ou o rendimento, mas sabemos que elas contribuem para um grande problema ambiental e económico na região, devido à erosão e degradação dos solos férteis. Na verdade, as faixas sem plantas herbáceas também podem prejudicar a biodiversidade, incluindo insetos benéficos, como vespas parasitoides especializadas (e.g., Braconidae), que podem ajudar a controlar pragas das culturas, e abelhas que polinizam as árvores frutíferas. Trabalhámos com agricultores para explorar experimentalmente uma forma de manter o solo coberto sem sacrificar o rendimento das culturas.

A EBA espanhola

Criámos Áreas Experimentais de Biodiversidade (EBA) em 16 explorações agrícolas de frutos de caroço. A área de estudo foi a região de Vega del Guadalquivir, um vale fluvial fértil e plano, a nordeste de Sevilha (sul de Espanha), dedicado principalmente à agricultura intensiva, com uma cobertura significativa de culturas lenhosas, como citrinos, olivais e pomares de frutos de caroço. Em conjunto com produtores de frutos de caroço e outras partes interessadas relacionadas com a agricultura, lançámos a comunidade Guadalquivida¹ (Figura 1), com o objetivo de testar soluções locais para desafios locais, partilhando uma abordagem central com outras iniciativas em toda a Europa. Os objetivos da comunidade Guadalquivida foram: (1) conciliar a agricultura intensiva e a conservação da biodiversidade, (2) partilhar conhecimentos entre as partes interessadas, (3) procurar soluções comuns em conjunto e (4) unir o setor em torno das necessidades e oportunidades.

¹ Guadalquivida https://www.beeproject.science/eba.html

Figura 1: Logótipo da comunidade agrícola Guadalquivida, mostrando o contraste ecológico entre as entrelinhas da quinta experimental «La Mejora», em Alcolea del Rio, província de Sevilha (sul de Espanha). As entrelinhas com faixas de flores beneficiaram os insetos sem competir com a cultura (intervenção), em comparação com as entrelinhas sem plantas herbáceas, que apresentavam principalmente solo nu (controlo). Fotos de Elena Velado-Alonso. Na imagem central, observamos o comportamento alimentar de uma aranha-caranguejo (Thomisidae) sobre uma abelha melífera (Apis mellifera), um exemplo do rico conjunto de interações entre plantas silvestres, as aranhas que as utilizam como habitat e os polinizadores. Foto de Estefania Tobajas e logótipo desenvolvido pela Scienseed.

A nossa abordagem

Realizámos um workshop de diagnóstico presencial para identificar necessidades e oportunidades. Este workshop consistiu em três atividades conjuntas: (1) uma discussão para quebrar o gelo sobre a perceção da biodiversidade, (2) um estudo de mapeamento das explorações agrícolas para compreender a gestão «habitual» nas explorações e (3) a utilização de uma árvore de decisão para identificar potenciais soluções e oportunidades relacionadas com a biodiversidade.

Como resultado do workshop de diagnóstico, os agricultores e técnicos agrícolas mostraramse interessados em melhorar o conhecimento sobre o estado da biodiversidade nas explorações agrícolas e em co-conceber intervenções alinhadas com os Planos Agrícolas Comuns existentes e futuros. Os cientistas desenvolveram um dossiê de intervenção baseado em evidências científicas para discutir medidas potenciais orientadas para faixas de flores e sebes. Após duas rondas de visitas presenciais a cada exploração agrícola e discussões com agricultores, técnicos agrícolas e outros trabalhadores das empresas, foram selecionadas faixas de flores silvestres como intervenção experimental. Os objetivos das faixas era promover a estabilidade das explorações agrícolas, favorecendo a fauna benéfica para a produção, melhorando as características do solo e quebrando os ciclos de pragas, sem afetar negativamente o rendimento. Utilizámos uma mistura de sementes de cinco espécies: dois trevos (*Trifolium pratense* e *Trifolium repens*), mostarda-verde (*Brassica juncea*), centeio (*Secale Cereale*) e ervilhaca-peluda (*Vicia villosa*). Como parte do co-design, os agricultores escolheram a área de implementação, e as práticas de gestão comuns foram adaptadas às operações diárias nas explorações agrícolas. Em cada exploração, plantámos faixas de flores em 1 ha de terra (tratamento experimental) e deixámos 1 ha sem plantar (controlo) (Figura 2). Monitorizámos como as faixas afetaram a biodiversidade das plantas, polinizadores e aranhas, bem como o rendimento das culturas. A monitorização foi realizada em 16 pomares de frutos de caroço, dos quais oito eram de pêssego (*Prunus persicae*), três de nectarina (*Prunus persicae nucipersica*), quatro de ameixa (*Prunus domestica*) e um de amêndoa (*Prunus dulcis*).

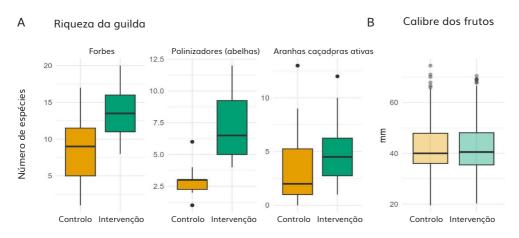


Figura 2: Exemplos representativos de quintas sem faixas de flores, tratamento de controlo (em cima) e com faixas, tratamento experimental (em baixo); início da primavera com pomares em flor (à esquerda) e condições de verão mais secas (à direita). Fotos de Francisco de Paula Molina.

O que descobrimos

A nossa experiência demonstrou que as faixas de flores podem melhorar significativamente a biodiversidade sem prejudicar o rendimento dos frutos de caroço. Encontrámos mais plantas, polinizadores e aranhas nas áreas com faixas de flores. Isto é importante porque estas criaturas podem ajudar a controlar as pragas nas culturas frutíferas e melhorar a saúde do solo.

Em particular, encontramos 99 espécies diferentes de plantas, 91 espécies de polinizadores e 56 espécies de aranhas, mostrando a rica biodiversidade que os pomares podem abrigar. Em relação ao controlo, as faixas de flores levaram a um aumento estimado de 10 vezes na abundância de polinizadores. A riqueza de espécies de polinizadores em coberturas verdes triplicou em comparação com o controlo. Em relação ao controlo, as faixas de flores levaram a um aumento estimado de 100 vezes na abundância de flores, e a riqueza de espécies de flores nas faixas foi duas vezes superior. A abundância de aranhas nas faixas de flores foi, em média, 1,5 vezes superior em comparação com as faixas de controlo; e a riqueza de espécies de aranhas foi duas vezes maior nas faixas de flores em comparação com as faixas de controlo (Figura 3).

Figura 3: O número de espécies de grupos funcionais relevantes para a prestação de serviços dos ecossistemas nas explorações agrícolas (à esquerda) calibre dos frutos (diâmetro do fruto, uma medida típica da qualidade dos frutos) como *proxy* do rendimento dos frutos (à direita), entre parcelas de controlo (solo nu) e de intervenção (faixas de flores semeadas).

Quais são as implicações

As nossas conclusões demonstraram que é possível aumentar a biodiversidade em sistemas agrícolas intensivos sem comprometer a produtividade. Esta é uma boa notícia para os agricultores que querem proteger o ambiente e, ao mesmo tempo, gerir negócios rentáveis. Além disso, a utilização de faixas de flores pode ajudar a reduzir a necessidade de herbicidas, poupando dinheiro aos agricultores e protegendo o ambiente.

Um agricultor participante disse: "No início, eu estava cético, mas estou realmente impressionado com os resultados. As faixas de flores funcionaram bem no meu pomar. Não vi mais pragas e as minhas árvores estão saudáveis. Além disso, economizei dinheiro com herbicidas".

Este estudo de caso mostra que as faixas de flores podem ser uma ferramenta valiosa para melhorar a biodiversidade em pomares de frutos de caroço. Ao trabalharem em conjunto, os agricultores, cientistas e decisores políticos podem criar sistemas agrícolas mais sustentáveis e resilientes que beneficiam tanto as pessoas como o planeta.

As experiências agroecológicas com agricultores para reduzir a intensidade das práticas agrícolas não tiveram efeito sobre os rendimentos, mas tiveram efeitos positivos sobre a biodiversidade e as margens brutas

Vincent Bretagnolle, Jerome Faure y Sabrina Gaba

Uma série de experiências foi realizada entre 2022 e 2023 com 19 agricultores e 58 campos de cereais, alguns convencionais e outros orgânicos. As experiências tiveram como objetivo: (i) a redução de pesticidas e/ou azoto sintético em 30-50% para os agricultores convencionais e (ii) a remoção mecânica de ervas daninhas e o trabalho do solo, normalmente evitando a lavoura profunda, para os agricultores orgânicos. A biodiversidade (flores de campos aráveis, aranhas, besouros carabídeos e abelhas), o rendimento das culturas, as práticas agrícolas e as margens brutas foram avaliados e analisados, para testar se era possível alcançar uma situação vantajosa para a biodiversidade e para o rendimento e/ou margem bruta. Constatámos que, em geral, os rendimentos não foram significativamente penalizados pela redução dos *inputs* (a magnitude do efeito foi de cerca de 5% de diminuição), mas isso dependia do ano da experiência e da intensidade das práticas agrícolas. Consequentemente, as margens brutas globais permaneceram estáveis ou aumentaram significativamente, dependendo do ano e, em particular, do equilíbrio entre os preços das culturas e os preços dos *inputs* (que variaram muito entre 2022 e 2023).

O desafio

(1) Agricultura convencional: O uso de pesticidas ajudou a apoiar a segurança alimentar, mas o seu uso também ameaça a saúde humana e dos ecossistemas, bem como o funcionamento dos ecossistemas, ao ponto de métodos alternativos de controlo de pragas se tornarem objetivos políticos e sociais importantes. Compreender se a redução do uso de pesticidas, sem comprometer a produção e a qualidade dos alimentos, aumenta a carga de trabalho dos agricultores e favorece o surto de pragas e ervas daninhas, continua a ser um desafio fundamental. Realizámos dois conjuntos de experiências para abordar esta questão. Realizámos experiências de redução de *inputs* em 31 campos de trigo de agricultores convencionais e avaliámos as consequências em termos de rendimento e margem bruta. Um dos principais objetivos da nossa Área Experimental de Biodiversidade (EBA) era avaliar os impactos de uma redução substancial de pesticidas (normalmente 30-50%), juntamente com uma redução semelhante de azoto (fertilizante), na biodiversidade à escala do terreno, nos rendimentos e, subsequentemente, nas margens brutas.

(2) Agricultura biológica: A qualidade do solo é muito importante para a produtividade e sustentabilidade agrícolas e depende em grande parte dos decompositores que reciclam os nutrientes. A biodiversidade também afeta a estrutura e a qualidade do solo. Em particular, as minhocas têm um papel importante na transferência e acumulação de matéria orgânica em todo o perfil do solo. Os agricultores biológicos utilizam a lavoura para preparar os campos antes da sementeira e também utilizam a remoção mecânica de ervas daninhas para controlar as suas populações. Estas duas práticas agrícolas são conhecidas por reduzir a biodiversidade do solo. Por isso, os agricultores biológicos foram incentivados a reduzir a mobilização do solo nas culturas de trigo. Assim, num segundo conjunto de campos, explorámos uma redução da mobilização do solo (remoção

mecânica de ervas daninhas, lavoura reduzida) em campos de cereais de inverno, em 27 campos cultivados de forma biológica.

A EBA francesa

A EBA francesa está localizada na região da Nova Aquitânia, no centro-oeste da França. O local cobre cerca de 450 km² com mais de 13 000 campos agrícolas pertencentes a quase 450 explorações agrícolas. É uma plataforma de investigação que pertence à rede francesa de Investigação Ecológica de Longo Prazo¹ (parte da LTER europeia²). Mais de 90% da área é cultivada, dividida igualmente entre agricultura mista e agricultura arável pura, sendo que as explorações agrícolas mistas diminuíram de 80% nos últimos 25 anos. Das 450 explorações agrícolas, mais de 70 são cultivadas de forma biológica e mais de 100 contrataram medidas agroambientais, metade da área de estudo é um sítio NATURA 2000³. Uma paisagem típica dentro da EBA pode ser vista na Figura 1.

Figura 1: Paisaje primaveral típico en el núcleo del espacio NATURA2000. Foto de Zone Atelier Plaine y Val de Sevre.

¹Rede Francesa de Investigação Ecológica de Longo Prazo, https://deims.org/networks/d8d9206f-b1bd-4f90-84b7-8c662d4235a2

²LTER Europe https://elter-ri.eu/

³ NATURA2000 https://www.eea.europa.eu/themes/biodiversity/natura-2000/the-natura-2000-protected-areas-network

A nossa abordagem

Testámos intervenções destinadas a reduzir a intensidade da gestão da produção agrícola no trigo de inverno, o que foi conseguido através da combinação de: (1) Agricultura convencional (redução do uso de nitratos e pesticidas) e (2) Agricultura biológica (redução da lavoura de várias vezes por ano para nenhuma lavoura, reduzindo simultaneamente a remoção mecânica de ervas daninhas para uma ou duas vezes por ano).

Foram estabelecidos contactos com agricultores, muitos dos quais já tinham participado em projetos anteriores, e a intervenção foi concebida em conjunto com estes agricultores para decidir a área e a localização das parcelas experimentais, e como poderia ser alcançada uma redução da intensidade da gestão. As parcelas experimentais (Figura 2) foram então comparadas com um controlo (práticas habituais); (1) os agricultores convencionais escolheram a largura, a posição e o nível/magnitude da redução de pesticidas e nitratos a aplicar em parte ou na totalidade do campo, e (2) os agricultores biológicos decidiram a intensidade e o tipo de operações do solo que pretendiam reduzir (ou seja, lavoura, remoção mecânica de ervas daninhas ou ambos).

Esta abordagem resultou num projeto complexo para acomodar a variedade de preferências dos agricultores. No total, participaram 27 agricultores por ano (dos quais 19 participaram durante dois anos). Alguns agricultores realizaram experiências em toda a escala do terreno, resultando em experiências entre terrenos. Outros agricultores decidiram dividir o seu terreno numa parte experimental e numa parte de controlo, um desenho geralmente preferido pelos investigadores, pois tem o maior poder estatístico devido a outros fatores serem constantes (exceto a intervenção experimental) entre as duas amostras. As parcelas experimentais eram muito variáveis em tamanho, variando de uma faixa com cerca de 6 m de largura (ao longo do comprimento do campo) até cerca de 2 ha de área de campo. Um exemplo de uma parcela de intervenção é ilustrado na Figura 2.

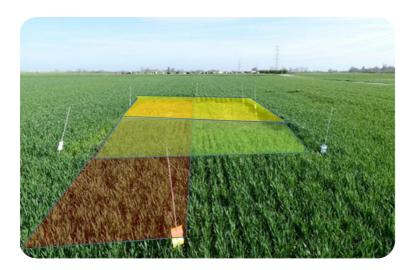
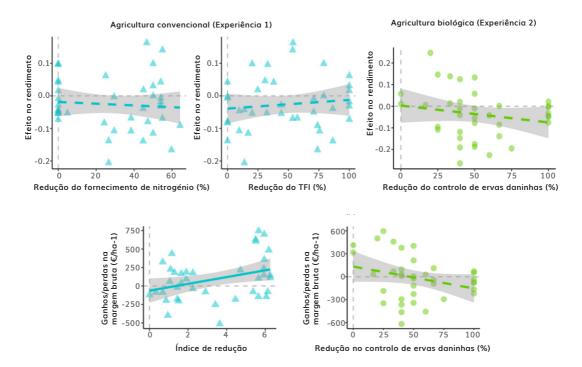



Figura 2: Parcelas num desenho fatorial duplo dentro de um campo de trigo. Todas as parcelas à esquerda receberam nitrogénio reduzido (vermelho), as parcelas à direita receberam herbicida reduzido (verde). Note-se que, neste caso, as parcelas superiores foram deixadas sem sementeira (amarelo) para estimar a diversidade e abundância de ervas daninhas a partir do banco de sementes. Foto de Zone Atelier Plaine e Val de Sevre.

O que descobrimos

Não detetámos diferenças significativas (ou seja, estatisticamente comprovadas) no rendimento do trigo entre as parcelas experimentais e as parcelas de controlo, nem nas explorações agrícolas convencionais (primeira experiência, diminuição média do rendimento de 4%), nem nas explorações agrícolas biológicas (segunda experiência, diminuição média do rendimento de 8%). A redução do uso de pesticidas (experiência 1) não teve efeito sobre o rendimento, enquanto a redução do nitrogénio teve um efeito marginal de 5,8% (Figura 3). No geral, a redução dos custos com o uso de menos pesticidas e nitrogénio nas explorações agrícolas convencionais mais do que compensou qualquer redução mínima no rendimento, resultando numa melhoria média de € 95/ha nas margens brutas dos agricultores convencionais. Nas explorações agrícolas biológicas, não houve efeito sobre a margem bruta.

Considerando os dois anos e os sistemas de agricultura convencional e biológica, em conjunto, constatámos um efeito positivo moderado na diversidade e abundância de ervas daninhas aráveis, um efeito positivo na diversidade de abelhas (mais pronunciado nos campos biológicos) e um efeito positivo muito forte na abundância e diversidade de aranhas nas parcelas experimentais em comparação com as parcelas de controlo.

Figura 3: Rendimentos de cereais de acordo com o tipo de redução, nitrogénio (esquerda), pesticidas (centro), remoção mecânica de ervas daninhas (direita) (em cima) e margem bruta de acordo com a redução experimental (em baixo) para explorações agrícolas biológicas (círculos verdes) e convencionais (triângulos azuis). As tendências significativas são apresentadas com linhas contínuas, os efeitos não significativos são apresentados com linhas tracejadas.

Quais são as implicações

Os agricultores ficaram muito otimistas com os resultados, mas ainda enfrentam enormes aumentos no custo dos *inputs* devido à incerteza na geopolítica e nos mercados globais. Por isso, estavam à procura de soluções para reduzir os custos dos *inputs*, mantendo o rendimento, sem um aumento significativo na sua carga de trabalho. Os agricultores da EBA já tinham algumas ideias das intervenções que queriam explorar e viram o projeto SHOWCASE como uma oportunidade para testá-las rigorosamente, trabalhando com investigadores para conceber uma experiência para monitorizar a biodiversidade e o rendimento. Trabalhando em conjunto, os agricultores e os investigadores conseguiram conceber experiências e testar resultados que mostram que existem algumas vantagens para a produção e para a biodiversidade numa variedade de sistemas agrícolas. Além disso, em 2024, alguns agricultores criaram experiências por conta própria com base na abordagem e nos métodos do projeto SHOWCASE. Eles se concentraram em experimentar outros fatores (por exemplo, mistura de culturas). Outros relataram que estavam dispostos a modificar as suas práticas para serem mais resilientes às crises climáticas e geopolíticas.

Flores silvestres em ação: como as intervenções ecológicas aumentam o rendimento e a biodiversidade nas explorações agrícolas na Hungria

Gyula Szabó, Flóra Vajna y András Báldi

A biodiversidade das terras agrícolas está a diminuir rapidamente, incluindo polinizadores, como abelhas selvagens, e controladores de pragas, como aranhas e aves. O objetivo da nossa EBA era restaurar as populações desses prestadores de serviços dos ecossistemas. Juntámo-nos a 10 agricultores húngaros para avaliar a eficácia das práticas agrícolas favoráveis aos polinizadores, utilizando duas experiências: (1) semeámos flores silvestres nativas locais em terrenos em pousio e (2) criámos campos e faixas de flores silvestres com 0,5 ha junto às culturas. Ambas as experiências tiveram resultados positivos, com o aumento da abundância de polinizadores, incluindo abelhas selvagens, moscas-dasflores e borboletas, em comparação com as áreas de controlo. Os terrenos em pousio semeados produziram mais feno e a qualidade do solo melhorou, enquanto o rendimento das culturas não se alterou junto aos campos de flores silvestres. Os campos de flores silvestres foram especialmente importantes no final do verão, quando as paisagens aráveis homogéneas não oferecem outros recursos florais para os polinizadores. Descobrimos que estas manchas de flores silvestres também proporcionavam benefícios mais amplos para a biodiversidade, por exemplo, atraindo aves agrícolas e espécies cinegéticas (por exemplo, lebres e veados) que as utilizam como locais de alimentação e descanso.

O desafio

A biodiversidade está a diminuir em todo o mundo. Uma das principais causas é a intensificação da agricultura; as florestas são derrubadas e as pastagens são aradas para dar lugar a mais culturas. Isto resulta na perda de habitat para plantas e animais nativos. No entanto, precisamos de espécies selvagens nas terras agrícolas, pois elas fornecem aos agricultores e à sociedade em geral uma variedade de serviços dos ecossistemas. As abelhas selvagens, as moscas-das-flores e as borboletas polinizam algumas culturas, enquanto as aranhas e as aves podem predar as pragas das culturas. Precisamos de plantas nativas nas paisagens agrícolas para fornecer alimento e abrigo aos polinizadores durante todo o ano, uma vez que as culturas, como as oleaginosas, florescem apenas por um curto período de tempo. Os habitats nativos também podem fornecer recursos para nidificação, abrigo e forragem para aves e mamíferos das terras agrícolas.

A EBA húngara

Colaborámos com 10 agricultores, um dos quais tinha trabalhado anteriormente num parque nacional como biólogo de conservação. Este agricultor gostava de praticar uma agricultura favorável à biodiversidade e implementámos duas experiências. Na primeira, semeámos flores silvestres nativas em terrenos em pousio pertencentes a 9 agricultores. Nestas parcelas, o solo é arenoso e a produção agrícola terminou há 10-15 anos, sendo agora utilizados para pastagem e produção de feno. Na segunda experiência, criámos campos de flores silvestres com 0,5 ha (Figura 1) na orla de grandes campos de culturas

(principalmente trigo, cevada, milho e girassol), pertencentes a um agricultor. Em seguida, monitorizámos a biodiversidade nessas duas experiências.

Figura 1: Um campo de flores silvestres em maio (em cima, foto de Gyula Szabó) e um campo de girassóis de controlo, sem flores, com uma armadilha panela utilizada para monitorizar os polinizadores (em baixo, foto de András Báldi)

A nossa abordagem

(1) EXPERIÊNCIA DE SEMENTEIRA

Nas experiências de sementeira em pousio, semeámos 11 espécies de flores silvestres nativas uma vez em 2019, em 9 parcelas de prados de 0,5 ha. Das 11 espécies de plantas, 7 eram leguminosas, que ajudam a acumular nitrogénio e matéria orgânica no solo. Para oferecer uma ampla gama de recursos para a biodiversidade, escolhemos espécies de plantas com uma variedade de tamanhos e estruturas acima e abaixo do solo, e uma variedade de tamanhos e cores de flores. Para cada parcela semeada, escolhemos uma parcela de controlo, não tratada, do mesmo tamanho, para comparar com a nossa intervenção. Os pousios foram ceifados uma vez por ano. Monitorizámos o solo, as plantas e os polinizadores em todas as parcelas semeadas e não tratadas (Figura 2).

(2) EXPERIÊNCIA COM CAMPOS DE FLORES SILVESTRES

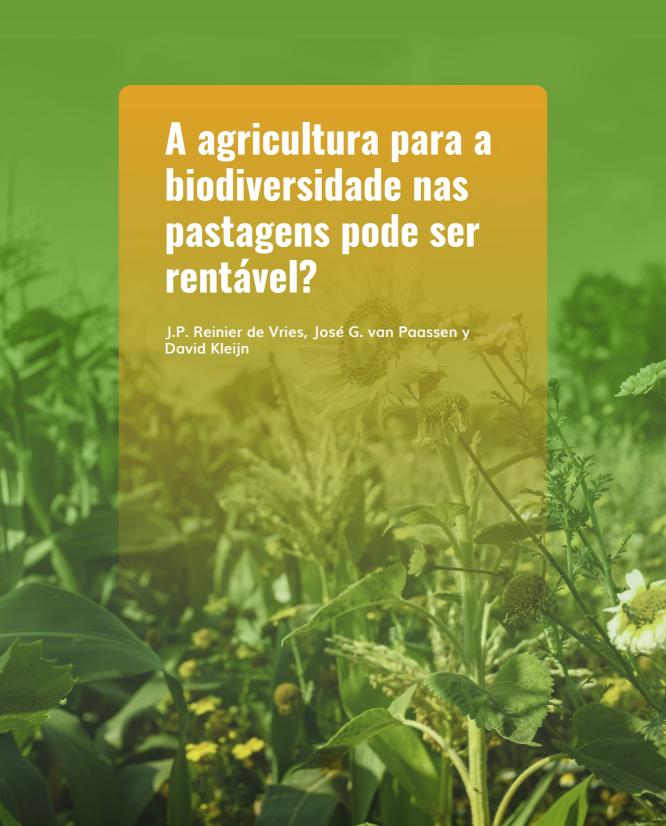
Estabelecemos 8 campos experimentais com faixas semeadas ao longo das margens das culturas, com um local de controlo não tratado por cada campo experimental. O campo de flores silvestres era um campo único de 0,5 ha, semeado com espécies silvestres nativas e com pequenas faixas de flores ao longo de 3 margens. Escolhemos 32 espécies de plantas nativas locais para semear, que abrangiam uma variedade de arquiteturas, cores e tamanhos de flores, e também incluímos algumas plantas raras na região. Monitorizámos os polinizadores e as aves nos campos e nas faixas (Figura 2). Quatro dos campos experimentais de flores silvestres estavam numa paisagem agrícola homogénea (>95% da área circundante era cultivada) e 4 estavam numa paisagem heterogénea (~50% da área circundante era pastagem seminatural e zona húmida).

Figura 2: Um zangão (*Bombus agricellus*) a alimentar-se de uma flor, numa faixa de flores silvestres (em cima), e um macho de cartaxo-comum (*Saxicola rubicola*), num campo de flores silvestres. Fotos de Gyula Szabó.

O que descobrimos

(1) EXPERIÊNCIA DE SEMENTEIRA SUPLEMENTAR

Descobrimos que a massa de feno aumentou significativamente nas parcelas semeadas, proporcionando mais alimento para o gado e as ovelhas. O número de flores silvestres aumentou, seguido pelo aumento dos polinizadores. No terceiro ano após a sementeira suplementar, a abundância de abelhas selvagens e borboletas também aumentou e permaneceu elevada nos anos seguintes. O número de abelhas selvagens era especialmente elevado no verão, quando as culturas eram colhidas e a paisagem agrícola estava maioritariamente coberta por solo nu. As parcelas semeadas forneceram refúgio


para as abelhas selvagens. Ao mesmo tempo, a qualidade do solo também melhorou, devido ao aumento do número de leguminosas.

(2) EXPERIÊNCIA COM CAMPOS DE FLORES SILVESTRES

Tanto as faixas de flores silvestres como os campos tiveram um efeito positivo nos polinizadores. A abundância de abelhas selvagens aumentou em torno das faixas de flores silvestres e dos campos na paisagem agrícola homogénea. Na paisagem heterogénea, este efeito foi muito mais fraco. Quando existem muitos habitats seminaturais na paisagem, os polinizadores dependem menos das manchas de flores silvestres semeadas. Também descobrimos que as manchas de flores silvestres atraíam aves agrícolas. As aves preferiam o campo único e maior em vez das faixas menores. Um benefício adicional do nosso tratamento favorável aos polinizadores foi percebido pelos caçadores locais, pois os animais de caça frequentemente usavam as faixas e campos de flores silvestres como locais de descanso e alimentação.

Quais são as implicações

Em conjunto, as nossas experiências revelam benefícios não só para os polinizadores, mas também para as aves e a caça. Do ponto de vista dos agricultores, ambas as experiências foram bem-sucedidas e todos os agricultores relataram que viram a qualidade do solo melhorar e que obtiveram mais feno dos seus prados. Além disso, os caçadores relataram que a caça utilizava as faixas de flores silvestres tanto para se alimentar como para descansar, e as aves das terras agrícolas também beneficiaram destes habitats. À medida que a biodiversidade melhorou, o rendimento não se alterou (faixas de flores silvestres) ou melhorou (sementeira), demonstrando que a biodiversidade e a produção podem andar de mãos dadas.

A redução da intensidade da gestão das pastagens é uma das medidas agroambientais mais amplamente implementadas para restaurar a biodiversidade dos terrenos agrícolas. Uma maior biodiversidade pode apoiar serviços dos ecossistemas benéficos para os agricultores, tais como uma maior produtividade das pastagens. Os programas destinados a reduzir a intensidade da gestão que aumentam com sucesso a biodiversidade podem, por conseguinte, ser mais rentáveis para os agricultores do que os programas que não o fazem. Na região de Geuldal, na Holanda, investigámos em que medida a biodiversidade pode compensar as perdas de rendimento associadas a uma gestão menos intensiva. Analisámos a biodiversidade, vários serviços dos ecossistemas, a produção e o rendimento dos agricultores em 41 pastagens com diferentes intensidades de gestão, desde zero até fertilização intensa. A agricultura menos intensiva aumentou efetivamente a biodiversidade e a maioria dos serviços dos ecossistemas medidos, o que produziu benefícios significativos para a sociedade. No entanto, apenas a cobertura de leguminosas, como o trevo, contribuiu para o rendimento. A agricultura menos intensiva resultou numa perda de rendimento para os agricultores que não foi compensada pelo aumento da prestação de serviços dos ecossitemas. Isto destaca a importância dos incentivos financeiros para estimular a agricultura favorável à biodiversidade.

O desafio

A biodiversidade nas terras agrícolas é importante, uma vez que estas cobrem uma parte substancial do território. No entanto, a intensificação da agricultura com o objetivo de maximizar a produção tem sido um importante fator do declínio da biodiversidade nas terras agrícolas ao longo do último século. Uma das principais causas deste declínio é a perda de pastagens extensivas em toda a Europa. Para contrariar esta tendência, foram introduzidos regimes agroambientais com o objetivo de compensar financeiramente os agricultores que praticam uma agricultura menos intensiva. Ao mesmo tempo, evidências científicas sugerem que melhorar a biodiversidade nas terras agrícolas também pode ser benéfico para os agricultores. Por exemplo, ter um maior número de espécies de plantas de pastagens poderia manter o rendimento, mas com um menor nível de aplicação de fertilizantes. Utilizámos o EBA holandesa para descobrir se uma agricultura menos intensiva para a biodiversidade poderia (parcialmente) compensar os seus custos.

A EBA holandesa

A EBA holandesa está situada na região de Geuldal (sudeste dos Países Baixos, cobrindo aproximadamente 70 km²). Trata-se de uma paisagem variada, com colinas onduladas, constituída por planaltos com solos agrícolas férteis (loess), ravinas fluviais, vales secos e sedimentos ricos em calcário que afloram nas encostas. O uso do solo nesta área inclui agricultura convencional intensiva e produção leiteira, agricultura mista biológica e uma área significativa de reservas naturais (Figura 1). Nesta área, foi lançada uma iniciativa,

De boshommel terug in het Geuldal, na qual agricultores, organizações de conservação da natureza, municípios, a agência de água, a província e cientistas trabalham em conjunto para melhorar toda a paisagem em prol da biodiversidade. Além disso, os agricultores estão unidos num coletivo que promove a agricultura inclusiva da natureza através de programas agroambientais. No entanto, a maior parte da EBA é cultivada de forma intensiva, o que leva a um maior declínio do seu rico património natural.

Figura 1: Paisagem típica do Geuldal, mostrando prados calcários localizados em encostas mais íngremes (frente) e campos aráveis intensivamente geridos e prados agrícolas geridos para gado leiteiro nos planaltos de loess (fundo). Foto de Reinier de Vries.

A nossa abordagem

Estudámos a biodiversidade, os múltiplos serviços dos ecossistemas (e.g., saúde do solo, carbono do solo, polinizadores) e a produtividade de 41 prados. Os locais formavam um gradiente que ia desde prados seminaturais com baixa intensidade de gestão até prados de produção de alta intensidade. Através de entrevistas com agricultores, recolhemos informações sobre a aplicação de fertilizantes, os custos de gestão e a produção, para estimar o rendimento dos agricultores, proveniente destes prados.

¹ https://boshommellandschap-geuldal.nl/

O que descobrimos

Os resultados mostraram que a redução da intensidade de gestão aumentou o número de espécies de plantas, abelhas e minhocas nas pastagens, reduziu a lixiviação de fosfato e nitrato para as águas subterrâneas e resultou em maior carbono no solo (Figura 2). A riqueza de espécies da vegetação aumentou fortemente, especialmente de níveis de produtividade médios para baixos. Isto indica que as pastagens de baixa produtividade dominadas por forbes são de importância crucial para a biodiversidade.

No entanto, após considerar o efeito do fertilizante, a maior biodiversidade não resultou em maior produtividade, embora a maior cobertura de leguminosas (principalmente trevos) tenha tido um efeito positivo na produção de pasto (**Figura 3**). A renda dos agricultores estava relacionada principalmente à intensidade da agricultura, com os benefícios da intensidade crescente se estabilizando em níveis elevados de fertilização.

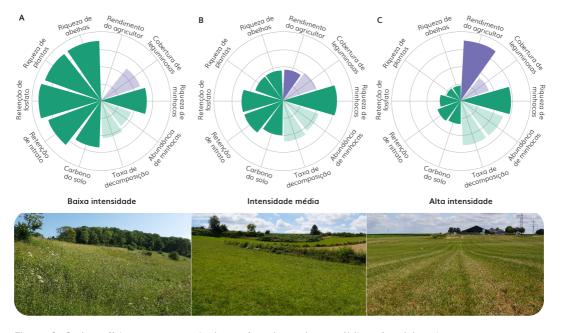


Figura 2: Os benefícios para os agricultores (roxo) e os bens públicos (verde) variam para a gestão de pastagens de baixa (esquerda), média (centro) e alta (direita) intensidade, representados pela renda dos agricultores (ou seja, níveis de margem bruta de 50, 700 e 1 350 €/ha/ano). Os serviços dos ecossistemas para os quais não encontramos evidências de alteração com a margem bruta são apresentados em cores desvanecidas. De baixa a alta intensidade, os aumentos na margem bruta estão relacionados com diminuições na biodiversidade (riqueza de plantas e abelhas), retenção de nutrientes e sequestro de carbono no solo, enquanto as funções do solo não são afetadas. Fotos de Reinier de Vries.

Figura 3: Neste prado, a produção leiteira biológica combina a redução da fertilização com a fixação de nutrientes por leguminosas (trevo branco e luzerna). A produção permanece bastante elevada e tanto a biodiversidade como a retenção de nutrientes melhoraram, embora não tanto como em regimes de gestão mais extensivos. Foto de Reinier de Vries.

Quais são as implicações

Nas pastagens agrícolas dos Países Baixos, uma agricultura menos intensiva restaurou o funcionamento ecológico. Isto melhora vários benefícios para a sociedade em paralelo, mas resulta numa diminuição do rendimento dos agricultores. Por outras palavras, aumentar a biodiversidade nas terras agrícolas não se paga a si própria, mas exige que os agricultores sejam recompensados financeiramente pela prestação destes bens públicos. Por exemplo, preço *premium*, regimes de pagamentos públicos ou tributação dos impactes negativos, podem tornar lucrativo para os agricultores cultivar de forma a fomentar a biodiversidade. Estas recompensas devem estar em consonância com os benefícios e a estabilidade dos rendimentos a longo prazo que a pecuária intensiva pode proporcionar. Isto poderia motivar mais agricultores a desempenhar um papel importante no restauro da biodiversidade e dos bens públicos nas paisagens agrícolas.

O artigo baseado neste estudo pode ser encontrado aqui: A perda de rendimentos limita o restauro de múltiplos serviços dos ecossistemas, baseados na biodiversidade, em pastagens agrícolas.

Nos últimos 30 anos, a olivicultura passou por um processo de intensificação rápida e em grande escala em toda a sua área histórica no Mediterrâneo, com impactes negativos significativos na biodiversidade. Na EBA portuguesa «EBAlentejo», investigámos o efeito da cobertura vegetal na entrelinha de árvores, numa série de locais experimentais, em três grupos de biodiversidade: abelhas, aranhas e plantas silvestres. Cada local incluía duas áreas distintas, uma área de intervenção na qual foi semeada vegetação herbácea nas entrelinhas e uma área de controlo onde não foi semeada vegetação herbácea nas entrelinhas. Descobrimos que a cobertura vegetal da entrelinha (uma espécie de faixa de flores silvestres) teve um impacto significativo nos três grupos de biodiversidade. Especificamente, o aumento da diversidade e da biomassa das plantas no tratamento experimental levou a uma maior riqueza e abundância de abelhas, aranhas e plantas. As nossas conclusões sugerem, portanto, que a gestão da cobertura vegetal na entrelinha pode ser crucial para ajudar na conservação da biodiversidade em olivais, incluindo os olivais intensivamente geridos.

O desafio

A produção de azeitonas (*Olea europaea*) representa uma parte significativa do setor agrícola na Europa, especialmente nos países do Mediterrâneo. Nos últimos 30 anos, a olivicultura passou por um processo de intensificação rápido e generalizado, caracterizado por mudanças distintas na estrutura dos olivais (por exemplo, maior densidade de árvores mais pequenas e mais jovens) e nas atividades de gestão associadas (por exemplo, uso de irrigação e maior mecanização e uso de agroquímicos). Em conjunto, estas mudanças estão a remodelar as paisagens agrícolas mediterrânicas, com impactes negativos associados na biodiversidade. Uma literatura bem estabelecida demonstra que a intensificação agrícola afeta praticamente todos os grupos taxonómicos, incluindo plantas e animais. Por conseguinte, é amplamente reconhecido que uma melhor gestão dos olivais é essencial para o sucesso da conservação da biodiversidade na Europa mediterrânica.

A EBA portuguesa

A «EBAlentejo» está localizada na região do Alentejo, no sul de Portugal, que é uma das regiões olivícolas mais importantes da Europa. O clima regional é mediterrânico, caracterizado por invernos amenos e chuvosos e verões quentes e secos, com temperaturas que atingem frequentemente os 40°C. A paisagem é rica em biodiversidade, com manchas naturais e seminaturais compostas principalmente por montados portugueses, florestas perenes de sobreiros (*Quercus suber*) e azinheiras (*Quercus rotundifolia*), o que leva a região a ser considerada um Sistema Agrícola de Alto Valor Natural (agricultura de baixo impacto com habitats ricos para a vida selvagem) (Figura 1).

Figura 1: Olival recentemente plantado numa paisagem de montado, mostrando uma variedade de árvores nativas isoladas, remanescentes, na região do Alentejo (Portugal). Foto de José Herrera.

Para envolver os olivicultores no nosso projeto experimental, criámos uma Área Experimental de Biodiversidade (EBA), denominada EBAlentejo, com o objetivo de aumentar a coesão entre os olivicultores da região estudada (Figura 2). Realizámos reuniões de grupo com olivicultores interessados em participar no EBAlentejo para criar uma abordagem experimental concebida em conjunto pelos olivicultores e pelos investigadores do projeto SHOWCASE. Através deste diálogo, conseguimos conceber uma mistura de sementes que visa aumentar a disponibilidade de recursos alimentares e de abrigo para grupos benéficos, como abelhas e aranhas, sem aumentar o número de pragas da oliveira, como a mosca da azeitona (*Bactrocera oleae*) e a traça da azeitona (*Prays oleae*).

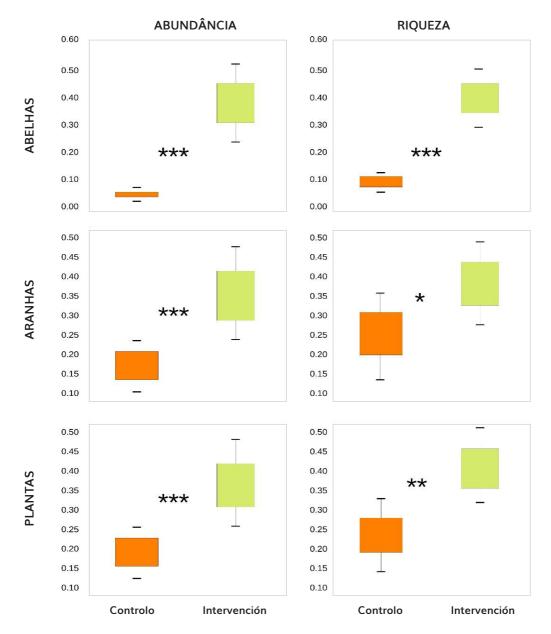
Figura 2: Logótipo da Área Experimental de Biodiversidade (EBAlentejo), na região do Alentejo, Portugal.

A nossa abordagem

A EBAlentejo foi utilizada para investigar o efeito da cobertura vegetal entre fileiras (intervenção) em três grupos-alvo de biodiversidade: abelhas, aranhas e plantas silvestres. Semeámos vegetação herbácea nas entrelinhas de árvores, em 10 locais experimentais em 2022 e 12 em 2023. Utilizámos um desenho emparelhado, de modo que cada local experimental incluísse duas áreas distintas: uma área na qual foi semeada vegetação herbácea nas entrelinhas (intervenção) e uma área de controlo onde

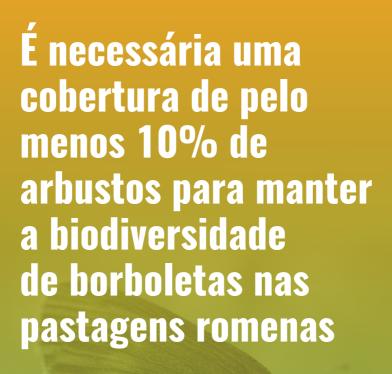
não foi semeada vegetação herbácea nas entrelinhas (Figura 3). Tanto a área de intervenção como a área de controlo cobriam quatro fileiras com 50 m de comprimento

e 1,5 m de largura. A vegetação semeada tinha como objetivo aumentar a vegetação e a abundância de recursos florais entre na entrelinha de oliveiras, e consistia numa mistura de coentro (*Coriandrium sativum*), colza (*Brassica napus*), sanfeno (*Orobrychus vicifolia*), trevos (*Trifolium suaveone e T. presupinatum*), ervilhacas (*Vicia sativa e V. villosa*) e tremoço (*Lupinus luteus*). Foi semeada a uma densidade de aproximadamente 15 kg de mistura por hectare.


Figura 3: Exemplo de uma área de controlo em que não foi realizada sementeira (não semeada, situação habitual) (em cima) e uma área de intervenção que mostra uma cobertura vegetal herbácea semeada (semeada) (em baixo). Fotos de José Herrera.

O que descobrimos

Que a cobertura vegetal semeada nas entrelinhas teve um impacte positivo significativo nos três grupos de biodiversidade. Especificamente, observou-se maior diversidade e biomassa de plantas e maior riqueza e abundância de abelhas, aranhas e plantas, no tratamento experimental, em ambos os anos do estudo (Figura 4). Além disso, a nossa intervenção não teve impactes (positivos ou negativos) nos níveis de infestação de pragas da oliveira por *B. oleae* ou *P. olae*.


Quais são as implicações

As nossas conclusões sugerem que a implementação de cobertura vegetal entre fileiras pode ser uma ferramenta importante para ajudar na conservação da biodiversidade em olivais, incluindo os que são geridos de forma intensiva. De facto, todos os agricultores que participaram no projeto e se integraram na EBAlentejo consideram este aumento da biodiversidade um incentivo para conservar e promover a cobertura vegetal nas entrelinhas nas suas explorações. No entanto, não é apenas o aumento da biodiversidade, mas também a ausência de qualquer impacte da intervenção nas pragas da oliveira, que resultou em opiniões positivas sobre a gestão da cobertura vegetal nas entrelinhas.

Figura 4: Abundância e riqueza de espécies de abelhas, aranhas e plantas entre áreas de intervenção em olivais com cobertura vegetal herbácea semeada (intervenção) e áreas não semeadas nas quais não foi realizada sementeira (controlo). A significância estatística é indicada por *** (p < 0,001), ** (p < 0,01) e * (p < 0,05).

Além disso, os olivicultores mostraram um forte interesse em compreender os impactos potenciais das intervenções nas espécies vertebradas insetívoras, incluindo aves e morcegos. Este interesse reflete o crescente reconhecimento de que as aves e os morcegos podem prestar serviços eficazes de controlo biológico nas explorações olivícolas mediterrânicas.

Prof. Dr. Laszlo Rakosy, Bodea Flaviu, Cristina Costache y Răzvan Popa

Resumo

A paisagem natural e cultural da Transilvânia abriga pontos importantes da biodiversidade de plantas e insetos na Europa. Os prados ricos em espécies são o resultado de milénios de uso tradicional da terra em harmonia com a natureza. Para apoiar a biodiversidade nessas pastagens, uma prática fundamental de gestão da terra é a remoção de arbustos, pela qual os agricultores recebem compensação financeira do governo romeno. Em 2022 e 2023, a EBA (Área Experimental de Biodiversidade) romena monitorizou a biodiversidade de borboletas em áreas recentemente desmatadas e em áreas não desmatadas de pradaria. Os resultados mostraram que a biodiversidade aumentou após a remoção dos arbustos. Além disso, a biodiversidade continua a aumentar nos anos seguintes se as pradarias forem continuamente geridas.

O desafio

Nos últimos 25 anos, as atividades tradicionais de uso não intensivo da terra foram frequentemente substituídas pela agricultura intensiva em grande escala ou pelo abandono da terra. Nas áreas abandonadas, onde falta gestão, a densidade de arbustos aumenta e as pastagens tornam-se inutilizáveis para pastoreio ou ceifa. Para ajudar a reduzir o efeito negativo do abandono do uso da terra e da expansão dos arbustos nas pastagens, a APIA¹ (agência de pagamentos do governo romeno) ofereceu pagamentos compensatórios aos agricultores para remover os arbustos. De 2007 a 2014, a Roménia implementou um Programa Nacional de Desenvolvimento Rural e, como resultado, alguns agricultores removeram arbustos ou árvores das suas pastagens para receber pagamentos da Política Agrícola Comum (PAC). Infelizmente, muitos agricultores removeram todas as características paisagísticas das suas pastagens, provavelmente devido a mal-entendidos ou falta de informação adequada, o que teve impactos negativos significativos na biodiversidade, na erosão do solo e na regulação da água.

A EBA romena

A EBA romena teve como objetivo avaliar os impactos das medidas agroambientais destinadas a limpar, mecânica ou manualmente, áreas com alta densidade de arbustos na biodiversidade das borboletas. A EBA está localizada na Transilvânia, no sítio Natura 2000 East Cluj Hills, que inclui a «Terra das borboletas azuis», uma área que dá nome aos produtos e serviços locais. Isto tem origem na presença de quatro espécies de borboletas azuis grandes (*Phengaris* ssp., Figura 1), que são protegidas por medidas especiais de conservação. A área incorpora 23 aldeias nas encostas, caracterizadas por solos argilosos ou calcários, onde se encontram prados naturais e seminaturais ricos em biodiversidade, sustentados por práticas agrícolas tradicionais de baixa intensidade.

¹ APIA https://apia.org.ro/

A nossa abordagem

Implementámos metodologias padronizadas de monitorização de borboletas em 15 locais onde os arbustos foram removidos pela gestão um ano antes (Figura 2), e em 15 locais onde os arbustos não foram cortados e a cobertura era de pelo menos 25–30% (Figura 3).

Figura 1: Borboleta azul grande e rara (*Phengaris teleius*). Foto do Prof. Dr. Laszlo Rakosy.

Figura 2: Área de pastagem recentemente cortada, onde os arbustos com seis a sete anos foram removidos mecanicamente. Foto do Prof. Dr. Laszlo Rakosy.

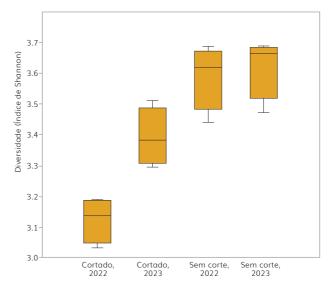


Figura 3: Comparação entre uma área com arbustos recentemente cortados e as áreas circundantes com elevada cobertura de arbustos com sete a oito anos. Foto do Prof. Dr. Laszlo Rakosy.

O que descobrimos

As nossas conclusões mostram que, nas áreas onde os arbustos foram cortados, a diversidade de borboletas aumentou de 2022 a 2023 (Figura 4). Em comparação, nas parcelas de controlo onde os arbustos não foram cortados, a diversidade de borboletas foi muito semelhante em 2022 e 2023.

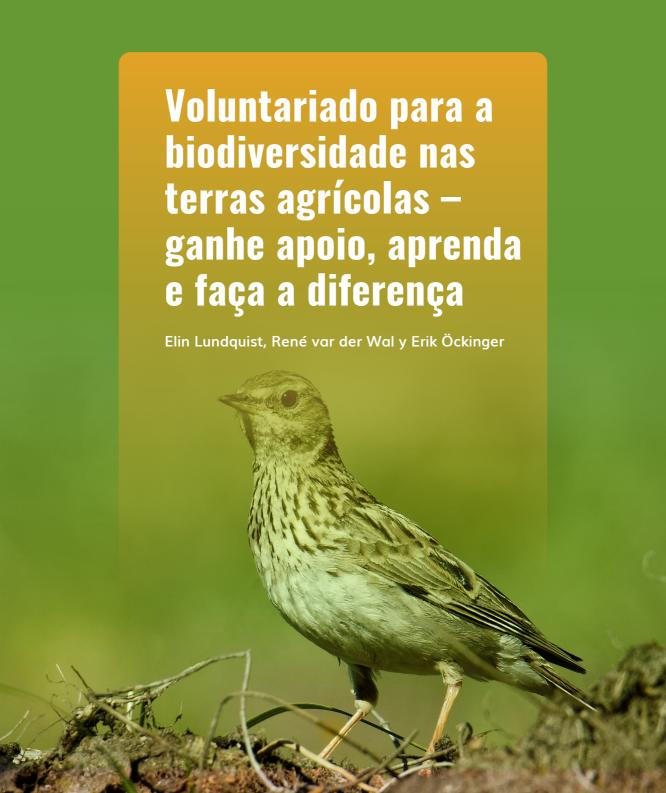
A diversidade de borboletas era relativamente alta nas parcelas de controlo porque havia caminhos e manchas de pastagem entre os arbustos densos. Isso cria microhabitats diversificados adequados para

Figura 4: Diversidad de especies de mariposas (calculada con el índice de Shannon) para cada intervención; arbustos cortados en 2022, cortados en 2023 y controles sin cortar para cada año.

muitas espécies de borboletas. No entanto, se não forem geridos, em poucos anos esses arbustos tornar-se-ão muito densos e homogéneos, e os microhabitats serão perdidos, o que será prejudicial para a biodiversidade local de borboletas. Como estas áreas arbustivas não podem ser utilizadas para agricultura ou pecuária, existe uma oportunidade importante para manter a biodiversidade através da remoção de arbustos utilizando outras práticas, como o corte.

Quais são as implicações

Com base nas nossas conclusões e na experiência dos agricultores locais, elaborámos em conjunto recomendações para a remoção de arbustos. A remoção mecânica de arbustos através de cobertura morta (Figura 5) é preferível à remoção manual, uma vez que a área limpa pode ser utilizada para pastagem ou para corte de feno a partir do segundo ano após a limpeza. A remoção manual é recomendada para reduzir a invasão de arbustos em prados onde a cobertura é de 15-30%. Nesses casos, a remoção manual restaura os espaços abertos entre os arbustos, necessários para o desenvolvimento de uma variedade de espécies vegetais e animais, especialmente insetos e aves. A remoção completa dos arbustos tem um impacto negativo na biodiversidade. Portanto, manter estruturas nas quais os arbustos ocupam 5-15% da pastagem e estão distribuídos de forma relativamente uniforme, ou com áreas pequenas e compactas de arbustos, é a alternativa ideal para a biodiversidade e os agricultores (Figura 6).


Figura 5: Exemplo de maquinaria pesada utilizada para limpar os arbustos. Foto do Prof. Dr. Laszlo Rakosy.

A experiência da EBA romena, em conjunto com a Sociedade Romena de Lepidopterologia¹, serviu de base em 2022 para propor ao Ministério da Agricultura da Roménia dois pacotes agroambientais destinados à conservação das borboletas através da retenção de 15-20% da cobertura arbustiva nas pastagens. Atualmente, estes foram aceites pelo Ministério. mas ainda não foram implementados no Programa Estratégico Nacional. A manutenção de 15-20% de arbustos por hectare torna os agricultores elegíveis para apoio financeiro para a remoção de arbustos, sem o qual seria difícil para eles implementar a prática em benefício da biodiversidade.

Figura 6: Exemplo de pastagem semi-natural permanente com estrutura vegetal ideal. Foto do Prof. Dr. Laszlo Rakosy.

¹ Sociedade Romena de Lepidopterologia https://www.lepidoptera.ro/english.htm

Resumo

Ao longo dos séculos, as paisagens evoluíram sob a pressão do uso humano da terra. Embora a mudança seja uma parte inevitável da nossa existência, cada transformação traz o desafio de equilibrar a produtividade agrícola com a conservação da biodiversidade. À medida que as espécies continuam a diminuir nas terras agrícolas, intensifica-se a urgência de proteger a biodiversidade, essencial tanto para a resiliência agrícola como para a saúde ecológica global. Através do projeto SHOWCASE, procuramos intervenções em que os agricultores, que enfrentam muitos compromissos e desafios relacionados com o cultivo de alimentos, possam ser ajudados a abordar os interesses e preocupações em matéria de biodiversidade. Estas intervenções são diversas na sua abordagem e na forma como os agricultores se relacionam com elas, mas normalmente estão relacionadas com ações de monitorização ou conservação. Aqui, apresentamos alguns exemplos que ilustram três formas de envolvimento dos agricultores.

- Na primeira, os agricultores assumem uma posição secundária e deixam que outros voluntários implementem o trabalho de monitorização ou conservação. Isto significa que as atividades de apoio à biodiversidade podem ocorrer nos terrenos dos agricultores ou nas suas imediações sem o seu envolvimento direto, mas os agricultores podem receber feedback dos voluntários. Por vezes, este tipo de atividade voluntária nas terras agrícolas leva a medidas adicionais, altura em que os agricultores podem passar a envolver-se ativamente.
- Na segunda categoria, os agricultores podem aumentar o seu nível de envolvimento, pedindo ajuda aos voluntários ou às respetivas organizações responsáveis pela monitorização da biodiversidade, para aumentar a monitorização ou a conservação.
- O terceiro nível é aquele em que os próprios agricultores se voluntariam para promover a biodiversidade, através da monitorização de espécies nas suas explorações agrícolas.

Agricultores em segundo plano

As iniciativas aqui abordadas visam proteger diretamente as espécies selvagens das terras agrícolas, avaliar o sucesso dos esforços de conservação ou obter uma compreensão mais profunda da distribuição e abundância da biodiversidade nas terras agrícolas. Os voluntários trabalham frequentemente de forma ativa para promover e proteger a biodiversidade, concentrando-se nas espécies móveis das terras agrícolas que diminuíram ou desapareceram. Uma iniciativa voluntária dedica-se à monitorização do tartaranhão-caçador (*Circus pygargus*), uma ave de rapina relativamente rara no sul da Suécia (Figura 1). Observadores de aves, voluntários, trabalham com as autoridades locais para localizar e proteger esses ninhos, e informar os agricultores que têm um ninho nos seus terrenos antes que os campos sejam ceifados, garantindo a segurança das aves sem perturbar muito as atividades agrícolas. Essa colaboração exemplifica como a conservação e a agricultura podem coexistir com uma coordenação cuidadosa.

Os investigadores também contactaram agricultores, tanto dentro como fora da EBA sueca, perguntando se tinham interesse em monitorizar os polinizadores nas suas terras. Alguns agricultores tiveram a opção de receber feedback de voluntários naturalistas que tinham realizado a monitorização, em vez de monitorizarem eles próprios os polinizadores. Esses agricultores apreciaram o conhecimento dos voluntários e apoiaram os seus esforços, por sentirem que não tinham tempo nem conhecimento para monitorizar por conta própria. Isso ajudou a facilitar os laços sociais entre grupos que, de outra forma, estariam separados.

Peça ajuda aos voluntários

Outro exemplo de voluntários que trabalham para aumentar a biodiversidade nas terras agrícolas é o esforço para reintroduzir a cegonha-branca (*Ciconia ciconia*), uma espécie que desapareceu da Suécia devido a mudanças no uso da terra (Figura 2). O Projeto Cegonha Sueca (Storkprojektet)¹, uma colaboração entre duas ONGs (Naturskyddsföreningen Skåne e Skånes Ornitologiska förening), tem dois objetivos principais: trazer de volta a cegonha-branca às terras agrícolas e levantar a questão do restauro das zonas húmidas que são vitais para o seu habitat. Os voluntários desempenham um papel fundamental nesta iniciativa, cuidando e alimentando as crias, tornando a paisagem agrícola mais resiliente, preparando-as para a vida selvagem e incentivando o regresso de uma espécie ligada a paisagens restauradas que podem beneficiar outras espécies. Embora os agricultores não estejam diretamente envolvidos no projeto, este ajuda os proprietários de terras, oferecendo orientação sobre a construção de plataformas de nidificação e aconselhamento sobre os esforços de restauro das zonas húmidas.

Na Holanda, voluntários ajudam os agricultores a procurar ninhos de aves de prado, uma referência à antiga tradição de encontrar o primeiro ovo de abibe da temporada. Todos os anos, voluntários de todo o país vão às terras agrícolas e marcam os ninhos de abibes (*Vanellus vanellus*), milherangos (*Limosa limosa*) e ostraceiros (*Haematopus ostralegus*), para que os agricultores e os empreiteiros possam cortar a erva à volta deles (Figura 3). Pequenas comunidades locais, orientadas para a agricultura, estão a formar-se em torno das terras agrícolas para dar uma oportunidade às aves dos prados. As suas atividades estão ligadas a programas agroambientais, o que significa que os agricultores podem obter uma compensação financeira. Estas atividades não acontecem por acaso: existem organizações coordenadoras que aproveitam as estruturas existentes, tanto do lado dos agricultores como dos conservacionistas de aves. Como resultado, muitos voluntários encontram-se nas terras agrícolas e destacam o valor das aves dos prados, que muitos agricultores partilham ou percebem e, em última análise, utilizam no seu trabalho. Reconhecemos que nem todos os

¹ Storkprojektet https://storkprojektet.com/

países da Europa podem contar com o mesmo forte interesse cultural pelas aves dos prados, mas podem procurar a biodiversidade que ressoa na respetiva cultura agrícola e aproveitar as estruturas existentes.

Figura 1: Ao monitorizar a população de tartaranhões-caçadores na primavera, a organização Projekt Ängshök consegue identificar e proteger os seus locais de nidificação. Fotos de Anders Åberg.

Figura 2: O Projeto Cegonha Sueca trabalha para reintroduzir a cegonha-branca na Suécia, contando com voluntários dedicados. Foto de Per-Erik Larsson.

Figura 3: Voluntários da Boerenlandvogels² a realizar um inquérito sobre aves de prado. Foto de Berry Lucas.

² Boerenlandvogels https://www.boerenlandvogelsnederland.nl/

Agricultores como cientistas cidadãos

O terceiro nível de envolvimento é aquele em que os agricultores assumem eles próprios o papel de voluntários da biodiversidade e tornam-se cientistas cidadãos. Isto é exemplificado num projeto de monitorização de borboletas noturnas, também na Holanda, onde os agricultores instalam e gerem armadilhas para insetos nas suas terras para apoiar a recolha de dados. Os agricultores fotografam as borboletas noturnas, que são depois identificadas numa das organizações que lidera o projeto, a De Vlinderstichting³. Descobrimos que a motivação dos agricultores não era apenas fornecer informações valiosas sobre os ecossistemas agrícolas, mas também combater equívocos sobre o impacte da agricultura na biodiversidade. Através deste trabalho prático, os agricultores, motivados pela preocupação com a natureza, podem aprofundar a sua compreensão do ecossistema das suas terras.

A semelhança do projeto de monitorização de borboletas noturnas, os agricultores monitorizaram os polinizadores nas suas terras no âmbito do projeto SHOWCASE nas EBAs na Suécia, Espanha e Reino Unido, mas, neste caso, identificando os próprios insetos. Estes agricultores foram motivados pelo desejo de aprender mais sobre as suas terras, avaliar o impacto dos seus esforços na natureza e na biodiversidade e contribuir para uma investigação científica. Para muitos, esta monitorização proporcionou uma oportunidade única de descobrir a variedade de borboletas e outros insetos existentes nos seus terrenos, ao mesmo tempo que contribuíam para os dados científicos. Embora alguns participantes tenham inicialmente achado difícil encontrar tempo para estas observações, outros encontraram formas criativas de integrá-las nas suas rotinas, como durante breves pausas no trabalho. Um participante observou que dedicar um momento para se concentrar nas borboletas proporcionava até uma pausa relaxante nas tarefas do dia, sublinhando como a monitorização da biodiversidade pode aumentar tanto a consciência ambiental quanto o bem-estar pessoal.

Em todos estes exemplos, vimos que o envolvimento apoiou a conservação, fornecendo dados, incentivando a responsabilidade pela natureza e fortalecendo os laços comunitários, o que promoveu um compromisso comum com a preservação do nosso ambiente para as gerações futuras.

³ De Vlinderstichting https://www.vlinderstichting.nl/

Resumo

As culturas de cobertura são semeadas para cobrir e proteger o solo quando este não está a ser utilizado por outras culturas. Podem proporcionar uma série de benefícios ambientais e produtivos, mas o seu impacto depende das espécies plantadas. Aqui, comparamos três misturas de culturas de cobertura de inverno e um controlo onde não foram semeadas culturas de cobertura. Constatámos benefícios significativos para a biodiversidade como resultado do cultivo de cobertura, com 26% mais aranhas e 53% mais minhocas nas parcelas com cobertura durante o inverno. A abundância e a biomassa (peso/área) das minhocas também aumentaram na cultura da primavera seguinte em 66% e 60%, respetivamente. As minhocas promovem a saúde do solo e as aranhas são importantes para o controlo de pragas, o que pode aumentar o rendimento das culturas e os lucros agrícolas. Estes resultados são extremamente promissores, uma vez que este estudo foi realizado ao longo de um ano e os benefícios das culturas de cobertura provavelmente aumentarão se forem praticadas durante vários anos. Estes resultados apoiam fortemente os benefícios ambientais das culturas de cobertura de inverno no Reino Unido. Também demonstramos o valor de incluir os agricultores na definicão das questões de investigação e na conceção das experiências, uma vez que a nossa questão de investigação foi concebida em conjunto com 16 agricultores. Isto tornou os nossos resultados diretamente relevantes para a nossa comunidade agrícola e vários participantes alteraram as suas práticas como resultado das nossas conclusões.

O desafio

A sementeira de culturas de cobertura remonta a pelo menos 2000 anos, com registos da Grécia Antiga e Roma descrevendo leguminosas sendo aradas no solo para melhorar a fertilidade.

A investigação demonstrou que as culturas de cobertura de inverno podem proporcionar muitos benefícios nos sistemas aráveis, incluindo a promoção da biodiversidade benéfica (por exemplo, polinizadores, inimigos naturais, invertebrados do solo), a supressão de ervas daninhas e a melhoria da saúde do solo (por exemplo, redução da compactação e erosão e aumento da matéria orgânica e da disponibilidade de nutrientes).

Esses benefícios também podem aumentar o rendimento das culturas subsequentes, mas nem sempre. O impacto das culturas de cobertura na produção depende do local e do contexto de gestão. Por exemplo, alguns estudos mostram benefícios apenas com misturas de culturas de cobertura de leguminosas ou quando o solo não é perturbado pela lavoura. Esses resultados mistos podem tornar difícil saber quais espécies semear e como geri-las.

UK EBA

A nossa questão de investigação foi concebida em conjunto por 16 agricultores, investigadores e os nossos parceiros da indústria. O nosso objetivo era testar uma intervenção agrícola que pudesse promover a produção e a biodiversidade ao mesmo tempo e, após oito meses de reuniões e discussões, decidimos realizar um ensaio com culturas de cobertura. Em particular, pretendíamos testar os impactes ambientais e na produção de diferentes misturas de culturas de cobertura e, especificamente, o impacte da tolerância à geada das culturas de cobertura. No Reino Unido, as culturas de cobertura são mais frequentemente removidas por pulverização de herbicidas, e queríamos testar os impactes de misturas que podem necessitar de menos herbicidas se tiverem morrido parcialmente com a geada e, portanto, tiverem uma biomassa vegetal reduzida. Isto poderia trazer benefícios ambientais e financeiros devido à redução das taxas de aplicação. A nossa hipótese era que as misturas sensíveis à geada também poderiam melhorar a saúde do solo, adicionando nutrientes ao decompor-se acima e abaixo do solo durante o inverno.

A nossa abordagem

Este ensaio foi realizado em onze herdades no sul de Inglaterra entre 2021 e 2023. Recolhemos dados em quatro momentos, utilizando um desenho experimental robusto que inclui medições pré-tratamento e pós-tratamento.

Testámos quatro tratamentos de culturas de cobertura (Figura 1):

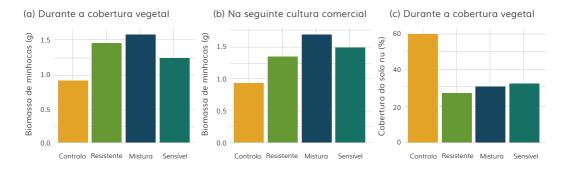
- **Sensível à geada:** uma mistura de quatro espécies de culturas de cobertura sensíveis à geada, incluindo ervilha-anglicana precoce, trevo-bersem, aveia-preta e trigo-sarraceno.
- **Resistentes à geada:** uma mistura de quatro espécies de culturas de cobertura resistentes à geada, incluindo ervilhaca-de-inverno, trevo-vermelho, centeio protetor e linhaça.
- **Mistura:** Uma mistura de oito espécies utilizando uma taxa de aplicação reduzida de cada uma das espécies acima.
- 4 Controlo: Não foram plantadas culturas de cobertura.

Avaliámos o impacte destas misturas na biodiversidade (incluindo plantas, aranhas, besouros e minhocas), na saúde do solo (incluindo decomposição, estrutura e matéria orgânica) e na produção (incluindo o rendimento de cereais e o peso de mil grãos, bem como biomassa de culturas de cobertura e teor de nitrogénio) (Figura 1).

Figura 1: Mistura resistente ao inverno da, em primeiro plano, mistura sensível ao inverno atrás e o controlo ao fundo (A), agricultores e investigadores a discutir as misturas de culturas de cobertura (B), tratamento misto à esquerda e controlo à direita (C) e recolha e triagem manual de minhocas no campo utilizando um monólito de solo (D e E). Fotos de Amelia Hood.

O que descobrimos

Culturas de cobertura vs. controlo. Encontrámos um impacto significativo dos tratamentos com culturas de cobertura nas plantas, aranhas, minhocas e decomposição:


- A cobertura do solo nu era o dobro nas parcelas de controlo em comparação com as parcelas com culturas de cobertura (Figura 2).
- Havia 26% mais aranhas nas parcelas com culturas de cobertura em comparação com as de controlo quando as culturas de cobertura estavam presentes.
- A abundância de minhocas (contagem) e a biomassa (peso por área) foram 53% e 57% maiores quando as culturas de cobertura estavam presentes e 66% e 60% maiores na cultura da primavera seguinte, respetivamente (Figura 2).
- A decomposição microbiana (medida através do enterramento e pesagem de saquinhos de chá) foi 42% mais rápida nas parcelas com culturas de cobertura durante o período de cultivo.

Embora não se tenha observado impacte significativo nos outros indicadores (besouros, estrutura do solo, matéria orgânica e produção), isso não significa que a cobertura vegetal não beneficiaria esses indicadores num período mais longo. Na verdade, vários estudos demonstraram que os benefícios da cobertura vegetal aumentam após vários

anos de uso. Dada a força dos benefícios que encontramos aqui, incluindo benefícios na cultura subsequente, os nossos resultados sugerem um potencial promissor para benefícios mais amplos e de longo prazo.

Diferenças entre as misturas. A mistura sensível ao inverno morreu durante o inverno, o que aumentou a cobertura do solo nu em comparação com os tratamentos resistentes ao inverno e mistos (Figura 2). Os tratamentos resistentes e mistos também apresentaram 44% mais biomassa vegetal seca e 15% mais nitrogénio nas culturas de cobertura por área.

Em termos do seu impacto na biodiversidade e na saúde do solo, as diferenças entre os tratamentos foram menores, com menos aranhas e taxas de decomposição mais lentas na mistura sensível ao inverno, em comparação com as outras duas misturas. No geral, estes resultados são promissores para a utilização de misturas sensíveis ao inverno para reduzir as taxas de herbicidas para a remoção de culturas de cobertura, mantendo os benefícios ecológicos das culturas de cobertura.

Figura 2: Três parcelas mostrando a média (a) da biomassa de minhocas por amostra durante a sementeira de cobertura (janeiro-fevereiro de 2023), (b) da biomassa de minhocas por amostra na cultura comercial (cevada de primavera, trigo, aveia) que se seguiu à cultura de cobertura (março-abril de 2023) e (c) da percentagem de cobertura do solo nu durante a sementeira de cobertura (outubro-novembro de 2022).

Quais são as implicações

Nossas descobertas mostram que as culturas de cobertura podem proporcionar múltiplos benefícios ambientais após uma temporada, e esses benefícios provavelmente aumentarão se praticadas ao longo de vários anos. O aumento da abundância de aranhas provavelmente trará benefícios para a produção a longo prazo, pois as aranhas são importantes inimigos naturais (por exemplo, controlando pulgões). Além disso, aumentar a cobertura vegetal e incentivar as minhocas pode melhorar a saúde do solo por meio da melhoria da sua estrutura, maior disponibilidade de nutrientes, aumento da matéria orgânica e redução da erosão. Isso é importante para o rendimento das culturas,

mas também para criar solos resilientes às alterações climáticas (e.g., melhor infiltração de água durante chuvas fortes). Estes resultados apoiam fortemente os benefícios das culturas de cobertura de inverno.

Também demonstramos o valor de incluir os agricultores na definição das questões de investigação e na conceção das experiências. A nossa questão de investigação era diretamente relevante para a nossa comunidade agrícola e vários participantes alteraram as suas práticas como resultado das nossas conclusões.

Agradecimentos

Somos profundamente gratos a todos que contribuíram para este trabalho. Agradecemos aos agricultores, agrônomos, representantes de ONGs e políticas, e a todos os outros cuja expertise e colaboração tornaram este projeto um sucesso.

Contribuidores

SWITZERLAND

Felix Herzog¹, Matthias Albrecht¹, Maura Ganz², Chiara Durrer¹ & Philippe Jeanneret¹

We are grateful to Mirjam Luethi from the IP-Suisse farmer association for her support in the Swiss EBA.

ESTONIA

Aki Kadulin, Mylene Martinez, Kaarel Sammet & Indrek Melts

Estonian University of Life Sciences, Estonia

SPAIN

Ignasi Bartomeus, Elena Velado-Alonso & Francisco de Paula Molina

Estación Biológica de Doñana, Spain

FRANCE

Vincent Bretagnolle¹, Jerome Faure¹ & Sabrina Gaba²

- 1 Centre d'Études Biologiques de Chizé, French National Centre for Scientific Research, France
- 2 National Research Institute for Agriculture, Food and Environment, France

HUNGARY

Gyula Szabó, Flóra Vajna & András Báldi

HUN-REN Centre for Ecological Research, Hungary

Estamos gratos ao proprietário (Állampusztai Mezőgazdasági Kft.) e à Direcção do Parque Nacional de Kiskunság por apoiarem o trabalho nas EBAs húngaras.

NETHERLANDS

J.P. Reinier de Vries, José G. van Paassen & David Kleijn

Wageningen University & Research, Netherlands

¹ Agroscope, Switzerland

² Department of Environmental Systems Science

PORTUGAL

José M. Herrera, Vanesa Rivera & Sílvia Barreiro

Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Portugal

ROMANIA

Prof. Dr. Laszlo Rakosy, Flaviu Bodea, Cristina Costache & Răzvan Popa

Universitatea Babeș Bolyai, Romania

SWEDEN

Elin Lundquist, René van der Wal & Erik Öckinger

Swedish University of Agricultural Sciences, Sweden

UNITED KINGDOM

Amelia Hood, Alice Mauchline, Tom Sizmur & Simon Potts

University of Reading, United Kingdom

Partners: Megan Whatty, Ian Gould, Duncan Westbury, Philip Arkell, Andy Bason, Will Batt, Jim Bryce, Jon Capes, Nick Down, Jake Freestone, David Lemon, Andrew Mahon, Jeremy Padfield, Robert Price, Mark Tufnell