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A B S T R A C T

As the world is struggling to halt the rapid decline of biodiversity, the assessment and mapping of ecosystem 
condition is getting ever increasing attention. Croplands are artificial ecosystems, but as they occupy a large 
portion of land, they significantly influence biodiversity. Yet, there is a knowledge gap about their suitability to 
support and maintain wildlife on a national scale. Large-scale condition mapping is meant to address this gap; the 
good condition of croplands includes their ability to support biodiversity. However, the lack of suitable databases 
is often a challenge when creating such maps. As there is a strong causal relation between pressures on the 
ecosystem and its condition, pressure indicators can be used as proxies to approximate condition when more 
direct indicators are lacking. The validation of condition maps based on pressure proxies is a key but challenging 
step. In this study, we tested a previously designed pressure-based cropland condition map for Hungary using 
bird census data. Besides validating the composite condition indicator, we also tested some key elements of the 
mapping process, such as the choice of variables and thresholds.

Using multiple comparisons of means by Tukey’s contrast and Random Forest modelling, we examined the 
relationship of (1) the continuous pressure-based cropland condition variables, (2) their rescaled, ordinal version 
(called sub-indicators), and (3) the composite cropland condition indicator (sum of the sub-indicators) with a 
biodiversity measure, the standardised relative richness of characteristic farmland bird species (rRRCS). To get a 
picture of the spatial patterns of the examined relationships across Hungary, individual Random Forest models 
were constructed for all the spatial units of the bird census database, using focal analysis with a 30 km radius 
moving window.

We found significant differences in the mean rRRCS for nearly all sub-indicator categories, signifying that the 
literature-derived thresholds were mostly sound. Categories with higher (better) condition scores had higher 
mean rRRCS; the differences are significant in the mid-range but not in the extreme categories, indicating a need 
for a meaningful simplification of the categories. The goodness-of-fit (R2) of the Random Forest models was 
found to be high, but it is spatially heterogeneous (ranged from 0.69 to 0.89, with a median value of 0.81), 
similarly to the variable importance. The proportion of semi-natural areas proved to be the most important 
condition variable. The proportion of maize and alfalfa were more important than parcel size. Our results show 
that condition maps based on pressure proxies can reflect patterns of biodiversity surprisingly well. They also 
highlight the spatial context dependence of the uncertainty of condition maps.
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1. Introduction

Evidence shows that biodiversity is rapidly declining worldwide, 
suggesting previous policies were inefficient in tackling the process 
(Tryjanowski et al., 2011, Díaz et al., 2019, Rounsevell et al., 2020, Báldi 
et al., 2023). However, new policies, like the EU’s Green Deal and 
Biodiversity Strategy or the Kunming-Montreal Global Biodiversity 
Framework of the Convention on Biological Diversity, set ambitious new 
targets (Báldi et al., 2023). All these policies highlight the need for 
robust monitoring and assessment programs to provide reliable and 
meaningful data for planning and evaluation. Only such data can pro-
vide the knowledge needed for successful progress in halting the decline 
of biodiversity.

The EU’s conservation strategies for 2020 and 2030 have introduced 
the mapping and assessment of ecosystems and their services, in order to 
prevent their further deterioration. The requirements to produce na-
tional ecosystem services and condition assessments significantly 
increased national-scale mapping efforts in the Member States (Vári 
et al., 2024). In order to ensure the consistency of the mapping and 
assessments across the Member States, a European Commission Working 
Group on Mapping and Assessment of Ecosystems and their Services 
(MAES) was formed (Maes et al., 2013). Throughout the process 
ecosystem condition gained an ever increasing emphasis (EC, 2020). 
Besides the inherent value represented by biodiversity, ecosystem con-
dition also underpins the ability of ecosystems to provide the services 
indispensable to the survival of humanity (Díaz et al., 2019). The need to 
produce consistent assessments across countries with very different 
environments and data led to reignited discussion about both the defi-
nition of ecosystem condition and its relation to earlier, similar terms 
(like naturalness or ecosystem health) (Rendon et al., 2019, Roche and 
Campagne, 2017). Further methodological challenges include (i) the 
selection of the condition variables to use (Maes et al., 2018, Keith et al., 
2020, Czúcz et al., 2021) (ii) the selection of reference values for the 
variables, which is necessary for them to be used in condition mapping 
(Keith et al., 2020, Jakobsson et al., 2020, Maes et al., 2020) and (iii) 
quantifying the uncertainty of the result maps (Agudelo et al., 2020). 
These steps and the related decisions are fundamental parts of the 
condition mapping process even if other types of models are used (see e. 
g. the IBECA method of Jakobsson et al., 2021). Reference levels and 
condition are especially in the focus. Keith et al. (2020) define reference 
level as ‘the value of a variable at the reference condition, against which 
it is meaningful to compare past, present or future measured values of 
the variable’. The aim of the discussions is to enable a well-standardised 
description of ecosystem condition, to support – among others – the 
proper integration of condition in ecosystem accounting and ultimately 
to help promote the conservation of biological diversity (Hein et al., 
2015).

The lack of good-quality primary data is a common hindering issue in 
large-scale mapping, both for ecosystem services (Eigenbrod et al., 
2010) and ecosystem condition (Maes et al., 2020). At smaller spatial 
scales, measuring biodiversity is one of the most common ways to 
describe ecosystem condition (Maes et al., 2012, Maes et al., 2018; 
Tryjanowski and Morelli, 2017); however, the necessary large, national- 
or continental-scale data are often lacking. In addition, to get a 
comprehensive picture, several taxa with different ecological re-
quirements should be included (Carignan and Villard, 2002, Maes and 
van Dyck, 2005). Thus, it is extremely resource-intensive and nearly 
impossible to accomplish a thorough biodiversity-based condition 
mapping at the national scale. Furthermore, such mapping ideally re-
quires wall-to-wall data of uniform quality. A common solution is the 
use of proxies – usually, some estimate based on known relationships 
with data from existing large-scale datasets such as land use maps (e.g. 
Rendon et al., 2020, Maes et al., 2023) or forest inventories (Zoltán 
et al., 2023). Sometimes, even a proxy chain is applied, e.g. using data 
on vegetation types to estimate flower abundance, which in turn is 
supposed to reflect pollinator richness (Zulian et al., 2013). However, 

the use of proxy variables increases uncertainty, which can affect the 
reliability of the final maps (Eigenbrod et al., 2010). Thus, the validation 
of proxy-based maps (both ES and condition) is a crucial step (Vallecillo 
et al., 2022), but it is still rarely done (Agudelo et al., 2020, Boerema 
et al., 2017). It is not even obvious what data to use for validation in 
order to reflect the goodness of the proxy-based map rather than 
methodological differences between the two (proxy-based and valida-
tion) maps (Schulp et al., 2014). In condition mapping, available 
large-scale variables often describe pressure rather than state. As there is 
a strong causal relation between pressures on the ecosystem and its 
condition, pressure indicators can be used as proxies to approximate 
condition when more direct indicators are lacking (Maes et al., 2018, 
Rendon et al., 2019, Smit et al., 2021). Yet, due to a temporal mismatch 
between pressure and its effect on biodiversity (Figueiredo et al., 2019, 
Rédei et al., 2020) and the nonlinearity of pressure-response relation-
ships (Burkett et al., 2005, Large et al., 2015), condition maps using 
pressure-based proxies have an added element of uncertainty. One 
possible way to validate such condition maps and get a measure of their 
uncertainties is to compare them to primary biodiversity data 
(Ritterbusch et al., 2022). Birds often provide the only primary biodi-
versity data of large-scale, systematic sampling (Gregory et al., 2003, 
Fraixedas et al., 2020) for terrestrial ecosystems. Given the avifauna’s 
popularity with both researchers and enthusiasts, bird census data are 
relatively common, even for larger areas. Birds are relatively easy and 
efficient to monitor, appear in all types of habitats and are sensitive to 
environmental change (Carignan and Villard, 2002, Chin et al., 2015, 
Nagy et al., 2017, Roilo et al., 2023).

In this study, we used bird census data to test how primary biodi-
versity data fit our proxy-based cropland condition map. Croplands are 
“land area under temporary and permanent cultivation, land temporarily 
fallow, horticultural and domestic habitats” (Vallecillo et al., 2022). It is an 
important land cover type; in 2020, EU farms used 157 million hectares 
of land for agricultural production (38 % of the EU’s total land area 
(EUROSTAT, 2022). Even though they are highly artificial ecosystems, 
they can contribute to maintaining biological diversity. Open-space bird 
species, like the yellow wagtail (Motacilla flava) or the skylark (Alauda 
arvensis) even breed in crop fields, and management intensity influences 
their abundance (Kovács-Hostyánszki et al., 2011). Many other bird 
species use croplands temporarily, e.g. as feeding areas (Bruun and 
Smith, 2003) or wintering ground (Siriwardena et al., 2006). However, 
defining the condition of croplands (in terms of their capacity to retain 
and support biological diversity) represents a unique challenge, as there 
is no natural reference. According to Maes et al., 2018 Agroecosystems are 
modified ecosystems, they are in good condition when they support biodi-
versity, abiotic resources are not depleted, and they provide a balanced supply 
of ecosystem services (provisioning, regulating, cultural).” Certain farmland 
bird species have been shown to indicate High Nature Value farmlands 
(Morelli et al., 2014). Still, most existing large-scale cropland condition 
maps use proxies or modelled data complemented with other, often 
partial or coarse-scale datasets (Vallecillo et al., 2022, Rendon et al., 
2022).

Locally, landscape characteristics define biodiversity, ecosystem 
functions and services (Olimpi et al., 2022). However, their importance 
is not uniform over the landscape (Batáry et al., 2010, Tscharntke et al., 
2012, Stjernman et al., 2019). As we are using precisely these charac-
teristics as proxies to describe cropland condition, and usually the 
applied models (including variable weights) are uniform within a 
country, this raises the question of how the uncertainty of the condition 
maps changes spatially. Spatial context has been shown to influence 
ecosystem services (Andersson et al., 2015), but its implications for 
terrestrial ecosystem condition mapping have, so far, not received much 
attention.

Following the requirements of the EU Biodiversity Strategy to 2020, 
various ecosystem services and ecosystem condition maps were created 
for Hungary within the frameworks of a national project (MAES-HU −
Vári et al., 2022). Action 5 of the Strategy required member states to 
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map and assess their ecosystems and their services. In the frames of this 
project, Tanács et al. (2022) developed condition maps for all major 
ecosystem types, among them croplands, focusing on their ability to 
support and maintain biodiversity. They chose the indicators as well as 
the thresholds (corresponding to the already mentioned reference 
values) for mapping cropland condition on the basis of the relevant 
scientific literature (see Table 1), which is one possible way of defining 
these (Keith et al., 2020).

Many European countries have completed some form of condition 
assessment for their ecosystems (Vári et al., 2024) but work explicitly 

related to cropland (Rendon et al., 2020, Grondard et al., 2021) is not 
common in the literature. The uncertainty of these maps and their 
spatial context dependence are even more poorly studied. Furthermore, 
there is a general lack of consensus on reference values and definitions of 
reference conditions for terrestrial ecosystems (Maes et al., 2020), 
including croplands. With this paper, we would like to address some of 
the above-mentioned challenges related to the mapping of cropland 
ecosystem condition, using the cropland condition map developed in 
MAES-HU (Tanács et al., 2022). Our questions are as follows:

(1) How well does a pressure-based cropland condition map fit the 
patterns of the relative richness of characteristic farmland bird 
species?

(2) Are the thresholds applied to the condition variables meaningful?
(3) Which were the most important proxy variables included in the 

cropland condition map?
(4) What are the spatial patterns of the relations examined in ques-

tions 1 and 3? Are the results consistent over larger areas?

2. Materials and methods

2.1. Data

2.1.1. Cropland condition map
The MAES-HU cropland condition map we used for this analysis as a 

proxy-based condition map was specifically created for the area of 
Hungary for the base year 2015 (Tanács et al., 2022, Fig. 1A, Fig. 2). The 
map aimed to reflect the state of these artificial ecosystems from the 
point of view of their ability to sustain biodiversity. It was based on a set 
of proxy variables, chosen according to relevance based on the related 
scientific literature. Certain other requirements were also observed for 
the chosen variables: (1) being spatially explicit, (2) being available as 
well as consistent over the entire country, (3) being based on already 
existing and regularly updated databases, and (4) conforming to the 
suggestions of the MAES group (Maes et al., 2018). The data source was 
the Farmer’s Subsidy Claims database of the Hungarian State Treasury, 
containing information related to the Single Area Payment Scheme 
(Henits et al., 2022). The spatial units were derived from those of the 
Hungarian Land Parcel Identification System (LPIS − Csonka et al., 
2011; Appendix A). Tanács et al. (2022) defined specific rules and 
thresholds for all variables based on relevant literature (e.g. Fahrig et al., 
2015, Martin et al., 2019). Following these rules, the continuous vari-
ables were rescaled to ordinal sub-indicator categories and scores were 
assigned to each category. Table 1. summarises the sub-indicators, the 
spatial units, the applied rules and the assigned scores. Then, the sub- 
indicator scores were summed to form the final ordinal indicator to 
measure the overall ecosystem condition. The final indicator was 
simplified into five categories (please refer to Fig. 7A). Vineyards and 
orchards were not included for reasons of information scarcity, only 
croplands.

2.1.2. Relative richness of characteristic bird species
For the validation of the cropland condition map, we used another, 

biodiversity-based condition map for agricultural land (incl. grassland), 
created within the frames of MAES-HU (Tanács et al., 2022, Fig. 1B). 
This map was created using an entirely different approach, based on the 
Hungarian MAP database of bird observations, which contains data in a 
2.5 × 2.5 km grid collected by volunteers according to a predefined 
method (Szép et al., 2021). The units of the map are referred to as UTM 
squares. The map shows the ratio of the number of characteristic 
farmland bird species actually present to the number of those species 
expected in favourable agricultural areas (from now on called “relative 
richness of characteristic bird species”, RRCS). The values range from 
0 to 1, 0 meaning none of the characteristic species are present in the 
area while 1 means all of them were observed. As only those UTM 
squares were considered relevant where the duration of observation was 

Table 1 
The variables, spatial units and rules applied in the condition mapping and the 
assigned scores (Tanács et al. 2022). The ‘Stands for’ column signifies what 
aspect the variable was chosen to describe, including literature that supports its 
use. For more details, see the Discussion.

Variable Unit Stands for Rule → Score

Number of 
cultivated 
crops (no 
or no/ha)

LPIS block* Landscape 
diversity Fahrig 
et al. 2011, 
Sirami et al. 2019

Block size below 1 ha: IF no 
>=2 → +1 point
In all other cases: 0 point
Block size above 1 ha: IF 
no/ha > 0.2 → +1 point
In all other cases: 0 point

Proportion of 
fallow land

LPIS block The amount of 
available hiding 
and feeding 
places (Busch 
et al. 2020)

IF proportion 
>=20 % → +1 point
In all other cases: 0 point

Proportion of 
alfalfa or 
green 
fallow**

LPIS block The amount of 
available hiding 
and feeding 
places (González 
del Portillo et al., 
2022, Kovács, 
2005)

IF value >= 20 % → +2 
point
IF value 2–19 % → +1 point
IF value < 2 % → 0 point

Proportion of 
maize

LPIS block Landscape 
homogeneity, 
management 
intensity 
Sauerbrei et al., 
2014, Jerrentrup 
et al. 2017, Hass 
et al. 2019, Busch 
et al. 2020

IF proportion > 50 % → − 1 
point
In all other cases: 0 point

Average 
parcel size

LPIS block Edge density 
(indirectly 
available hiding 
places); Fahrig 
et al. 2015, 
Batáry et al. 
2017, Marcacci 
et al. 2020

IF value < 5 ha → +2 point
IF value >= 5 AND <
10 ha → +1 point
IF value > 10 ha → 0 point

Proportion of 
protected 
areas 
(AES*** or 
HVNA****)

LPIS block Management 
intensity (incl. 
the reduced use 
of fertilizers and 
pesticides) (Maes 
et al. 2018)

IF AES and HVNA 
proportion 
together > 20 % → +1
In all other cases: 0 point

Proportion of 
semi- 
natural 
areas

300 m radius 
circle around 
each 20-m 
unit of the 
Ecosystem 
Map of 
Hungary; 
averaged for 
each LPIS 
block

The amount of 
available hiding 
and feeding 
places Zingg 
et al. 2018, 
Marcacci et al. 
2020, Klein et al. 
2023

IF proportion >=

20 % → +2 point
IF proportion 2–19 % → +1 
point
IF proportion < 2 % → 0 
point

*See Appendix A.
**Green fallow is permanent or periodic green cover (lasting for at least three 
years), consisting of at least three native species, including at least one of the 
Fabaceae family.
***Proportion of land included in an agri-environmental scheme (AES).
****Proportion of land subsidised under ‘High Nature Value Areas’ (HNVA).
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regarded as sufficient (at least 60 min in the period between 2014 and 
2018), the RRCS map only has values in 6335 UTM squares (out of the 
15,444 that cover the entire area of Hungary). For a more detailed 
description, refer to Appendix B.

3. Methods

All the analyses were conducted in ESRI ArcGIS 10.8 geoinformation 
software and R statistical software (R Core Team, 2023), and the pack-
ages of the latter called “emmeans” (Lenth, 2024), “multcomp” 
(Hothorn et al., 2008), “randomForest” (Liaw and Wiener, 2002), and 
“sf” (Pebesma, 2018, Pebesma and Bivand 2023).

3.1. Aggregation of the condition variables to the spatial units of the bird 
observation database

As the proxy-based condition indicators were calculated for a 

different, finer scale, the variables and indicators needed to be aggre-
gated to the scale of the bird database to enable comparison (Fig. 1C, 
Fig. 3). The aggregation was carried out using the Zonal tool of ArcGIS 
10.8 Spatial Analyst. For each 2.5 km UTM square, we calculated the 
mean of the continuous variables and the median of the ordinal variables 
(i.e. the values of the summed and final condition indicators and the 
scores of the sub-indicator categories).

3.2. Removing the effect of ecosystem extent and duration of observation 
on RRCS

In earlier work, we found that the RRCS correlated significantly with 
the duration of observation and also with the ratio of farmland within 
the UTM squares (Tanács et al., 2022). For further analysis, we 
considered it necessary to remove the influence of these factors and the 
possible bias they may cause. Ecosystem extent and condition are 
interrelated; disentangling their effect was considered important 

Fig. 1. The graphic summary of the work process. The main input datasets and analysis steps are highlighted with red blocks and indicated with letters (referenced in 
the text). The red numbers signify the research questions to which the results contribute. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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Fig. 2. The map of the MAES-HU pressure-based cropland condition indicator for Hungary (the sum of scores − Tanács et al. 2022). Higher values mean a favourable 
state for maintaining and supporting biodiversity. The white colour indicates non-cropland areas.

Fig. 3. The original spatial units of the two maps compared in the analysis − the UTM squares are units of the bird census data, while the blocks represent the units of 
the cropland condition map.

E. Tanács et al.                                                                                                                                                                                                                                  Ecological Indicators 167 (2024) 112665 

5 



because eventually the results of these maps and assessments would 
contribute to ecosystem accounting in the EU) where the two are 
required to be separated (Keith et al., 2020). To achieve this, we fitted a 
generalised linear model (GLM) using the RRCS for farmland birds as a 
response variable and assuming a binomial distribution with logit link 
due to the range of the RRCS values (Dobson and Barnett, 2008; Fig. 1D). 
The background variables were (1) the duration of observation and the 
ratio of (2) agricultural, (3) urban and (4) forested land within the UTM 
square. The ratio of wetlands was omitted as it could be generated as a 
linear combination of the others, thus making the background variables 
fully multicollinear. The part of the response variable unaffected by the 
background variables (the residual of RRCS, hereinafter rRRCS) was 
used for further analysis (Fig. 4). We consider the rRRCS an indicator of 
the ‘goodness’ of agricultural areas in terms of supporting a diverse bird 
population and, thus, indirectly, an indicator of their general ecological 
condition.

3.3. Validation of the cropland condition indicator and the thresholds 
applied to the variables

To validate our proxy-based cropland condition indicator, we 
compared the differences in the mean rRRCS between the categories 
represented by the sub-indicator and indicator scores. In each case, we 
performed multiple comparisons of means by Tukey’s contrast (here-
inafter “Tukey test”) and classified the indicator and sub-indicator 
scores into significance groups at α = 0.05 level (Fig. 1E).

As a further test of our choice of indicators, we ran a series of 
Random Forest regressions (with parameters detailed below) in a 30- 
km-radius moving window (focal analysis; Hagen-Zanker, 2016, Davis, 
2024, Jing et al., 2020) around each UTM square (Fig. 1F). Thus a total 
of 15,444 Random Forest models were created. The 30 km radius was 
defined as an optimum distance to have sufficient data for modelling 
while still keeping to a local scale. rRRCS was selected as the response 

variable for the Random Forest regression models. The explanatory 
variables were the same as those listed in Table 1, but those variable 
pairs that form combined indicators (alfalfa and green fallow; areas 
subsidised under HNVA or AES) were included individually to allow a 
more nuanced analysis. Thus, we included nine separate variables in 
these models. The models built 500 trees of (potentially) unlimited 
depth. The number of variables to possibly split at each node was set to 
three (i.e., the default value for nine background variables). Unweighted 
sampling of cases was done with replacement. Due to the above- 
mentioned trade-off between the sample size and the local scale of the 
analysis, instead of splitting the squares situated within the moving 
window to independent training and test subsets, all the squares of the 
window were used for training the model. Consequently, as the mea-
surement of the models’ goodness-of-fit, R2 values were calculated for 
each model using all predicted and observed values of the rRRCS within 
the window instead of calculating the out-of-bag R2. Please note that in 
this attempt to optimize the sample size, the model goodness-of-fit 
values may become too optimistic. Finally, the R2 values were mapped 
by allocating each goodness-of-fit value to the focal UTM square.

Only those UTM squares were included in any of the analyses that 
had a valid rRRCS value and where the ratio of arable land was at least 
10 % within the UTM square. That means 4957 squares. A map showing 
the number of suitable squares (i.e. the number of inputs) for each 
Random Forest model is shown in Appendix C.

3.4. The importance of the applied condition variables in predicting the 
rRRCS

Besides measuring the combined explanatory power of the chosen 
condition variables in the different regions of Hungary, the Random 
Forest regression also allowed the mapping of their individual local 
importance. To define variable importance, we used the “increase of the 
mean squared error” (IncMSE) measure. IncMSE measures the effect on 

Fig. 4. Map of the relative richness of characteristic bird species residual (rRRCS). RRCS is the ratio of the number of characteristic farmland bird species actually 
present to the number of these species expected in favourable agricultural areas. rRRCS is a modelled value where the extent of agricultural areas and the duration of 
observation within the examined spatial units are accounted for. White areas signify missing data, where the duration of observation was not sufficiently long to 
provide meaningful data.
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the predictive power of the model (i.e., the mean decrease in accuracy) 
when the value of a certain variable is randomly permuted (Breiman, 
2001). Based on the IncMSE, we defined a rank for each variable for each 
model, and thus, we had 9 × 15,444 rankings. In order to define overall 
variable importance, we looked at the number of times each variable 
was the most important (i.e., rank is #1). We then created a map to see 
the spatial patterns of the most important variables. We also looked at 
the sum of ranks, which provides a more nuanced picture (the lower the 
sum, the more important the variable).

4. Results

4.1. Validation of the condition indicators and the applied thresholds

We have found significant differences in the mean rRRCS for nearly 
all sub-indicators and categories (Fig. 5; for specific mean values, see 
Appendix D Table 1). Categories with higher condition scores (signifying 
better condition) had significantly higher rRRCS values. The only 
exception is parcel size, where we found no significant difference be-
tween UTM squares with a median score of 0 (dominated by large 
blocks, with > 10 ha average parcel size) and UTM squares with a me-
dian score of 1.

When comparing the means of the rRRCS between the categories of 
the summed condition indicator, we found that they generally increased 
with the values of the condition indicator (Fig. 6; for mean values, see 
Appendix D Table 2). The categories in the middle show significant 
differences, whereas the differentiation works less well in the case of low 
and high values (categories with a score of 0 vs 1 as well as 5 vs 6, and 4 
vs 6 do not differ significantly in terms of the rRRCS). There are no UTM 
squares with a median score of 8 or 9, while only a few squares have 
‘extreme’ scores of − 1 and 7 (2 and 9 UTM squares, respectively). This 
may explain the lack of consistency of these categories with the other-
wise clear trend. According to these results, the map can be 

meaningfully simplified. While the significantly different categories 
(with scores 1 to 5) should be separated, the extreme categories, where 
the element number is smaller than 100, can be merged with their 
neighbours. Thus, the first three (− 1 to 1) and the last five (5 to 9) 
categories would be aggregated. Categories 8 and 9 are present in only 
small areas and are included in the highest category. Fig. 7A shows the 
result of the original simplification used in MAES-HU, and Fig. 7B shows 
the modification suggested on the basis of our present results. The 
updated map has increased contrast, which helps to highlight the dif-
ferences more effectively.

4.2. Variable importance

Measures describing variable importance based on the ranks calcu-
lated from the IncMSE measures of all the RF models are shown in 
Table 2. Based on the number of UTM squares (and the corresponding 
models) where a specific variable was found to be the most important 
(rank #1), the variables are listed in order of variable importance, 
starting with the most important. The proportion of semi-natural areas 
stands out, as well as the proportion of land subsidised under High 
Nature Value Areas. In contrast, there are much smaller differences 
between the next three variables.

Considering the sum of ranks, the order is approximately the same, 
but only the proportion of semi-natural areas stands out, whereas there 
is little difference between the next four variables. The number of 
cultivated plants replaces the proportion of fallow land as the 5th most 
important variable.

4.3. Spatial patterns of Random Forest model’s goodness-of-fit and 
variable importance

R2 values range from 0.69 to 0.89 (with a median value of 0.81), 
meaning that the models built on our chosen set of variables describe the 

Fig. 5. Differences in the residual of the relative richness of characteristic bird species (rRRCS) according to the cropland condition sub-indicator categories used in 
the Hungarian pressure-based cropland condition mapping. RRCS is the ratio of the number of characteristic farmland bird species actually present to the number of 
these species expected in favourable agricultural areas. rRRCS is a modelled value where the extent of agricultural areas and the duration of observation within the 
examined spatial units are accounted for.
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variance in the rRRCS fairly well. The spatial distribution of the R2 

values (Fig. 8) shows that the best results are achieved in the central and 
eastern parts of the country, while the models work less well in the west.

The map of the most important variable (Fig. 9) also shows higher 
variability in the western, mostly hilly and forested regions of Hungary. 
Nearly all of the chosen variables were shown to have high importance 
in at least certain areas.

5. Discussion

The national-scale cropland condition indicator developed in MAES- 
HU was found to reflect differences in the presence of characteristic 
farmland birds − higher condition scores in an area generally mean 
more of the expected bird species to be present. The thresholds applied 
to the individual variables constituting the condition indicator were also 
found to be meaningful, with only a single exception. The results show 

Fig. 6. Differences in the residual of the relative richness of characteristic bird species (rRRCS) according to the pressure-based cropland condition indicator cat-
egories. RRCS is the ratio of the number of characteristic farmland bird species actually present to the number of these species expected in favourable agricultural 
areas. rRRCS is a modelled value where the extent of agricultural areas and the duration of observation within the examined spatial units are accounted for. Red lines 
show the possible aggregation of categories for a simplified map, suggested on the basis of the results, whereas the grey background signifies rare categories (n <
100). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2 
Variable importance according to the results of the Random Forest models for all 
(15,444) UTM squares.

Condition variable Rank #1 (% of all 
squares)

Sum of 
ranks

Proportion of semi-natural areas 37.2 44,805
Proportion of land subsidised under ‘High 

Nature Value Areas’ (HNVA)
16.1 72,153

Proportion of maize 9.2 72,261
Proportion of alfalfa 8.8 76,588
Proportion of fallow land 8.2 83,613
Number of cultivated plants (no or no/ha) 6.6 79,323
Average parcel size 5.9 83,816
Proportion of land included in an agri- 

environmental scheme (AES)
4.7 85,776

Proportion of green fallow 3.3 96,555

Fig. 7. A: the spatial distribution of the original five simplified categories of the cropland condition map applied in the Hungarian MAES (Tanács et al. 2022). B: the 
same cropland condition map, simplified with different thresholds based on the results of the current study (the differences of the mean rRRCS between areas with 
different condition scores). RRCS is the ratio of the number of characteristic farmland bird species actually present to the number of these species expected in 
favourable agricultural areas. rRRCS is a modelled value where the extent of agricultural areas and the duration of observation within the examined spatial units are 
accounted for. On both maps, higher values mean a favourable state for maintaining and supporting biodiversity. The white colour indicates non-cropland areas.
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that pressure and management-related proxies can serve as useful sub-
stitutes in large-scale condition mapping when biodiversity data are 
scarce or nonexistent. They also suggest that the uncertainty of these 
condition maps varies in space, which should be taken into consider-
ation when designing the models.

5.1. Is the MAES-HU pressure-based cropland condition indicator sound?

5.1.1. Differences in characteristic bird species presence according to the 
condition classes

When comparing the mean rRRCS between the categories formed by 
the summed condition scores, we found that the higher condition scores 
generally meant higher rRRCS values, especially in the middle of the 
condition range.

Large-scale condition maps based on pressure proxies could not and 
should not replace biodiversity monitoring. However, if their uncer-
tainty is known and taken into account, they can be useful tools for 
national-level conservation planning, especially in data-scarce areas 
(Maes et al., 2018). The MAES-HU pressure-based cropland condition 
map was designed as a general indicator of the ability of agricultural 
land to support wildlife. We used bird census data for validation as 
farmland birds can be useful surrogates for trends in other elements of 
biodiversity in this habitat (Gregory et al., 2005), and that was also the 
most comprehensive available database. Croplands are artificial eco-
systems covering a large part of Europe. Their suitability for birds varies 
according to their management, as it may limit food and nesting sites 
(Wilson et al., 1999, Blösch et al., 2023). Thus, agricultural intensifi-
cation is widely accepted as the main pressure for farmland bird decline 
(Rigal et al., 2023). Our results suggest that the MAES-HU cropland 
condition map, based on pressure-response evidence from the literature, 
is indeed indicative of the suitability of croplands to support farmland 
bird species in the landscape. The lack of significant differences between 
the more extreme condition categories is probably caused by the in-
teractions between the different types of pressure (Chiron et al., 2014). 
The ‘saturation effect’ at the higher scores is in line with research 

showing that enhancing artificial habitats may have significant positive 
effects on biodiversity, but such measures cannot entirely replace the 
restoration of (semi)-natural habitats in a landscape (Lengyel et al., 
2023).

5.1.2. The spatial context-dependence of ecosystem condition mapping
When examining the goodness-of-fit of our RF models across space, 

we found that the chosen variables together can explain a high per-
centage of the variance in the rRRCS. There was some definite spatial 
variation; the best results were achieved in the central and eastern parts 
of Hungary, while goodness-of-fit was generally weaker in the west. 
There is also a much higher spatial variability of the most important 
variable in the west. This phenomenon is consistent with findings 
related to the context-dependence of the importance of landscape fea-
tures in the success of conservation measures aiming to increase biodi-
versity in farmlands. The success of such measures was found to be the 
function of several factors, e.g. landscape context and agricultural land- 
use intensity (Batáry et al., 2010, Heath and Long, 2019, Kleijn et al., 
2011). The western hilly regions of Hungary have a more humid climate. 
They are also different from the eastern plains both in terms of 
ecosystem extent (more forests, less cropland) and elevation (Kocsis, 
2018). As a consequence, they also differ in the character and configu-
ration of the semi-natural landscape elements (Csorba et al., 2018). The 
rRRCS map itself can be considered a biodiversity-based condition map; 
the choice of characteristic species may affect the spatial patterns. 
Hungary is a small country and thus we used a single list for the whole 
area. However, it could be argued that even the list of birds chosen to 
calculate the RRCS could be adjusted to major regions for more precise 
results.

Our results suggest a spatial context-dependence of the goodness-of- 
fit of the modelled cropland condition. This shows that the uncertainty 
of condition maps may be locally higher and if one model is used across a 
larger region, their usefulness (e.g. in planning) may vary according to 
regions.

Fig. 8. The spatial distribution of the model’s goodness-of-fit. To each UTM square we assigned the R2 value of the Random Forest regression calculated for its 30 km- 
radius window.
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5.2. The importance of the individual condition variables

We examined the importance of the individual variables that serve as 
the basis for the cropland condition indicator. While there is a clear 
order of importance, with the proportion of semi-natural areas 
outstanding, we also found that any of the included variables can 
become the most important in certain areas.

The proportion of semi-natural areas was the most significant factor 
in predicting rRRCS, aligning with previous studies that highlight the 
critical role of these areas in supporting biodiversity (Zingg et al., 2018, 
Marcacci et al., 2020, Klein et al., 2023). While this variable may not 
directly reflect the condition of cropland, recent research shows that the 
success of nature-friendly farming practices, such as adding hedges, is 
heavily influenced by the amount of surrounding semi-natural areas 
(Batáry et al., 2010, Katayama et al., 2023).

Intensification leads to species loss (Wilson et al., 1999, Pal et al., 
2013, Rigal et al., 2023). We included the proportion of area subsidised 
under some form of agri-environmental scheme (AES and High Nature 
Value Areas − HNVA) as proxies for management intensity, since 
farmers in these programs must implement measures to enhance 
biodiversity. Although AES and HNVA form a combined sub-indicator in 
the model, we analysed them separately to gain a nuanced under-
standing. The results showed that the HNVA proportion was one of the 
most important variables, while the AES was among the least. Despite 
similar regulations, HNVA subsidies are limited to areas with existing 
high biodiversity, implying lower management intensity and diverse 
land cover (Beaufoy and Cooper, 2009, Andersen et al., 2004). The 

HNVA concept aligns closely with our condition mapping approach 
(Matin et al., 2020, Andersen et al., 2004). The measures specified as 
requirements for the subsidies in these schemes often include elements 
already featured in our model (e.g. planting alfalfa, setting aside fallow 
land, smaller field size, etc.). However, while there is potential overlap 
in input information, HNVA remains a useful indicator according to our 
results. It comprises some information (related to the limited use of 
pesticides and fertilisers in the subsidised areas), for which currently no 
other national-scale spatial data of the appropriate quality are available. 
The low importance of the AES-related variable can probably be 
attributed to the correlation of the two. However, there is also evidence 
of contrasting responses of different bird guilds to AES measures 
(Gamero et al., 2017) (Appendix E Table 1).

The proportion of maize was found to be the third most important 
variable but the reason for its prominent role is unclear. It was included 
based on scientific evidence concerning its adverse effects on biodiver-
sity (Busch et al., 2020, Hass et al., 2019, Jerrentrup et al., 2017, Sau-
erbrei et al., 2014). This was the only variable where we applied a 
negative score and the most controversial. Interestingly, most authors 
don’t explain why the increasing proportion of maize in the landscape 
may have such an effect. Possible explanations include the large-scale 
homogenization and simplification of land use at the landscape level 
(Jerrentrup et al., 2017). The results of our present analysis certainly 
justify its inclusion as part of a cropland condition indicator.

Alfalfa was included in the model as most agree on its positive effects 
on biodiversity and importance in nature-friendly farming. Alfalfa fields, 
as perennial crops, tend to maintain a stable arthropod community, 

Fig. 9. The spatial distribution of the most important variable of the Random Forest regression calculated for a 30 km-radius window around each UTM square. 
Variable importance was defined using the “increase of the mean squared error” (IncMSE) measure. To each UTM square we assigned the most important variable 
(the one with the highest IncMSE) of the Random Forest regression calculated for a 30 km-radius window around it.
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which in turn attracts vertebrates, especially birds. However, these ad-
vantages also depend on the management method (González del Portillo 
et al., 2022). Our results support its significance.

The proportion of fallow land had also been found to influence bird 
populations (Busch et al., 2020). We found it to be moderately important 
in our models, possibly due to its correlation with both the proportion of 
maize and semi-natural areas (Appendix E Table 1).

Average parcel size was the only variable where an applied threshold 
wasn’t meaningful (Fig. 5). It’s often used as a proxy for management 
intensity (e.g., Batáry et al., 2017, Marcacci et al., 2020), so we expected 
it to be highly significant—but it wasn’t. This may be because increasing 
mean field size causes species richness to decline more sharply in the 
lower field size range (<6 ha, Clough et al., 2020), making this variable 
less effective in areas with larger parcels. Potential collinearity with 
other variables may have further reduced its importance (Appendix E 
Table 1, Fahrig et al., 2015). While average parcel size was included to 
account for field margin density, which benefits wildlife (Marshall and 
Moonen, 2002; Martin et al., 2019), it doesn’t capture differences in 
margin quality, whereas field margins can vary greatly in habitat suit-
ability (Jobin et al., 2001, Heath et al., 2017).

The number of cultivated crops was included to refer to the variety of 
crops, also generally considered an important factor in maintaining 
biodiversity in farmlands (Sirami et al., 2019). In our models, its overall 
importance was moderate. This is in line with the findings of Jerrentrup 
et al. (2017).

The low importance of the proportion of green fallow in itself is 
probably due to the fact that it can only be found in a few areas and 
mostly in those subsidised under agri-environmental schemes.

5.3. Implications for the further development of cropland condition maps

The key steps of condition mapping with the additive method used in 
MAES-HU are (i) selecting the variables, (ii) defining the thresholds and 
(iii) defining the scores (in fact weighting the variables). A possible 
fourth step (iv) is simplifying the result to make it better interpretable, 
comparable to other condition maps, and easier to communicate to 
stakeholders. These steps or the related decisions usually form part of 
condition mapping, even if a different modelling method is applied. In 
the following, we discuss the implications of our findings to these steps.

5.3.1. Variable selection
There are now general guidelines to support the process of variable 

selection and suggested lists of variables are available for each major 
ecosystem type (Maes et al., 2018, Keith et al., 2020, Czúcz et al., 2021). 
These need to be adjusted to the specific area to be mapped and assessed, 
with data availability being an important limitation (Maes et al., 2020). 
While the set of proxy variables applied in MAES-HU was found to 
reflect the rRRCS well, the overall analysis of importance shows that 
some of the variables may be redundant. However, the spatial analysis 
showed that according to different geographical settings, practically any 
of the examined variables can become the most important.

Certain variables, considered key in the evaluation of cropland 
condition (Maes et al., 2018), were omitted from the mapping due to a 
lack of consistent, good-quality countrywide datasets. Spatially explicit 
data on (actual and not estimated) pesticide and fertiliser use should 
eventually be included as they are major drivers of biodiversity loss 
(Chiron et al., 2014, Rigal et al., 2023). Another useful addition could be 
the proximity or amount of wooded field margins. With easier access to 
remote sensing data, accurate large-scale maps of such green linear el-
ements can be expected to become increasingly available.

5.3.2. Thresholds and scoring
Reference-based approaches have high policy and management 

relevance as they are suitable for following the progress (or identifying 
degradation) (Jakobsson et al., 2020, Keith et al., 2020). The thresholds 
we applied to the pressure proxy variables can also be considered 

reference levels; they are meant to mark a level of pressure beyond 
which there is a noticeable decline in biodiversity. There is a consider-
able knowledge gap concerning ecologically meaningful reference levels 
in terrestrial ecosystems (Jakobsson et al., 2020). The thresholds 
examined here were based on scientific evidence collected from the 
literature (see Table 1) and experience from conservation projects (e.g. 
Kovács et al., 2005); our results mostly support their relevance.

It would be possible to further optimise the thresholds for each 
variable using the biodiversity data as the study of pressure-response 
relationships can provide information to set individual evidence-based 
thresholds (Ritterbusch et al., 2022). However, as different taxa tend 
to respond differently to pressure (Chiron et al., 2014, Martin et al., 
2019, Mallet et al., 2023), the optimisation should ideally be carried out 
using the data of several species groups. Furthermore, the optimal 
weighting of the condition sub-indicators would still be a challenge to 
address (Herzog et al., 2006). Sensitivity analysis is a possible option to 
test the relevance of the chosen variables and thresholds (Borgonovo 
and Plischke, 2016).

If suitable reference data are available, there are further options to 
carry out condition mapping besides the additive model used in MAES- 
HU (Keith et al., 2020). Random Forest, which we used here to define 
variable importance, can be a viable option, but there are several 
different analytical approaches worth considering before making a 
choice (Kosicki, 2020).

5.3.3. Simplifying the map
Based on our results, we suggest simplifying the condition map into 

five classes, which all significantly differ according to characteristic bird 
species presence. This simplification into a manageable number of cat-
egories can be useful beyond offering the possibility to create more 
distinct final categories. Effective communication towards potential 
users (both stakeholders and decision-makers) is necessary to improve 
the uptake potential of the condition maps (Mea et al., 2016). The visual 
representation of information on a map affects understanding and 
decision-making (Lecours, 2017, Thompson et al., 2018). Both 
decision-makers and the wider public seem to prefer a simple commu-
nication of scientific results (Borja et al., 2014, Tulloch et al., 2016). 
However, the more detailed results (in our case the individual 
sub-indicators and summed scores behind the simplified map) should 
also be made available to keep the complexity underpinning the results 
(Thompson et al., 2015) and provide a deeper insight for more effective 
decision-making.

6. Conclusions

The large-scale condition mapping of ecosystems is a useful tool in 
conservation and restoration planning, and such maps are increasingly 
in demand. However, the scarcity of suitable primary datasets means 
that the maps need to be based on proxy variables, designed on the basis 
of scientific evidence concerning pressure-response relationships. Our 
results show that for croplands, pressure-based proxies can reflect pat-
terns of biodiversity reasonably well. The pressure variables we used are 
quite common in describing cropland management intensity and con-
dition, and are usually easily accessible in most countries. Therefore, 
both our mapping method and the related findings on variable impor-
tance can be considered widely applicable. However, the results also 
draw attention to the fact that when mapping ecosystem condition in 
larger, geographically heterogeneous areas, a ‘one size fits all’ approach 
may increase the uncertainty of the condition maps. Thus, there is a 
tradeoff to be considered between the level of uncertainty and the 
complexity of the mapping process.
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Krauss, J., Le Féon, V., Marshall, J., Moonen, A.-C., Moreno, G., Riedinger, V., 
Rundlöf, M., Rusch, A., Scheper, J., Schneider, G., Schüepp, C., Stutz, S., Sutter, L., 
Tamburini, G., Thies, C., Tormos, J., Tscharntke, T., Tschumi, M., Uzman, D., 
Wagner, C., Zubair-Anjum, M., Steffan-Dewenter, I., 2019. The interplay of 
landscape composition and configuration: new pathways to manage functional 
biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094. 
https://doi.org/10.1111/ele.13265.
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