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A B S T R A C T

Twenty years ago, the Spectral Variation Hypothesis (SVH) was formulated as a means to link between different
aspects of biodiversity and spatial patterns of spectral data (e.g. reflectance) measured from optical remote
sensing. This hypothesis initially assumed a positive correlation between spatial variations computed from raster
data and spatial variations in the environment, which would in turn correlate with species richness: following
SVH, areas characterized by high spectral heterogeneity (SH) should be related to a higher number of available
ecological niches, more likely to host a higher number of species when combined. The past decade has witnessed
major evolution and progress both in terms of remotely sensed data available, techniques to analyze them, and
ecological questions to be addressed. SVH has been tested in many contexts with a variety of remote sensing data,
and this recent corpus highlighted potentials and pitfalls. The aim of this paper is to review and discuss recent
methodological developments based on SVH, leading progress in ecological knowledge as well as conceptual
uncertainties and limitations for the application of SVH to estimate different dimensions of biodiversity. In
particular, we systematically review more than 130 publications and provide an overview of ecosystems, the
different remote sensing data characteristics (i.e., spatial, spectral and temporal resolution), metrics, tools, and
applications for which the SVH was tested and the strength of the association between SH and biodiversity
metrics reported by each study. In conclusion, this paper serves as a guideline for researchers navigating the
complexities of applying the SVH, offering insights into the current state of knowledge and future research
possibilities in the field of biodiversity estimation by remote sensing data.

1. Introduction

The preservation of the Earth’s biodiversity and the sustainable use
of the planet’s natural resources are key objectives in a range of global
environmental initiatives such as the Kunming-Montreal Agreement
(Obura et al., 2023) and the Sustainable Development Goals (SDGs)

adopted by the United Nations (Griggs et al., 2013; Opoku, 2019). The
ratification of the 2030 agenda for Sustainable Development which
defined seventeen SDGs is one the biggest actions towards the conser-
vation and preservation of environmental conditions on Earth for future
generations, aiming at addressing the challenges currently faced by so-
ciety (Lee et al., 2016; Schultz et al., 2016). In particular, goal 15 of the
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SDGs aims to “protect, restore and develop sustainable use of terrestrial
ecosystems, to promote sustainable forest management, combat
desertification, and halt and reverse land degradation and halt biodi-
versity loss” (Opoku, 2019). As stressed by Sayer et al. (2019) in order to
attain these objectives, a robust emphasis on integration, widespread
political and public engagement, and heightened responsiveness to local
needs is imperative.

Biodiversity, broadly defined as the variety of life on Earth, supports
multiple ecosystem services that are necessary for human well being and
crucial for economic activities (Opoku, 2019). Biodiversity-oriented
management, while holding the potential to mitigate the loss of
ecosystem functions and services, faces a pressing reality. Projections
indicate that by 2050, these losses are anticipated to incur a substantial
cost, accounting for 7% of the world’s gross domestic product (Braat
et al., 2008; Mace et al., 2018). It is, therefore, fundamental to acquire
exhaustive information on the distribution of the different species, as
well as knowledge on changes in distribution with time (Nagendra,
2001; Torresani et al., 2023a; Rocchini et al., 2023a). The definition of
relevant ecological proxies informing on the situation and dynamics of
biodiversity is, therefore, crucial to develop monitoring strategies
feeding efficient planning strategies and conservation policies over the
variety of land and water ecosystems, from local to national to global
scale (Rocchini et al., 2010; Sandifer et al., 2015; Van Jaarsveld et al.,
1998). It is imperative, however, to recognize the necessity of balancing
trade-offs between biodiversity conservation and mitigation targets,
particularly at the landscape scale. Implementing monitoring systems of
this nature would not only facilitate the measurement of the effective-
ness of interventions and implemented policies but also contribute to the
nuanced management of such trade-offs.

Historically, estimates of species diversity were mainly based on field
inventories performed by scientific experts such as trained ecologists
and botanists. This approach usually provides accurate information, but
turns out to be time-consuming and costly, and shows limitations due to
a possible bias of the operator and standardized replication of protocols
for inventories (Rocchini et al., 2019). At regional and national levels,
biodiversity monitoring strategies differ widely among countries,
resulting in non-standardized datasets and these are often further
limited by the absence of a data sharing policy (Conti et al., 2021). In
recent decades, Earth observation appeared to be an innovative and
robust instrument for monitoring ecosystem biodiversity, allowing the
collection of uniform, periodic and economically sustainable data
(Cavender-Bares et al., 2020; Foody and Cutler, 2003; Skidmore et al.,
2021). Recent progresses in sensor technology and changes in data ac-
cess policy now often allow free and open access to fine spatial resolu-
tion imagery with global coverage and high revisit frequency. The free
and open data access policy of acquisitions from various remote sensing
platforms, combined with increased capacity for data processing make
Earth observation data and processing possible and economically
acceptable for biodiversity monitoring (Nagendra, 2001; Rocchini et al.,
2010; Pettorelli et al., 2014).

In the past, different remote sensing datasets have been used to es-
timate various components of biodiversity in distinct ecosystems
through numerous methodologies (Kacic and Kuenzer, 2022; Nagendra,
2001; Torresani et al., 2019). Optical information acquired with passive
sensors such as digital aerial photographs, airborne imaging spectros-
copy, multispectral imagery from unoccupied aerial vehicle (UAV),
airborne and satellite platforms have also been widely used to assess
biodiversity in various ecosystems (Laurin et al., 2014; Dandois et al.,
2015; Lassau et al., 2005; Rocchini, 2007; Torresani et al., 2019; Asner,
2015). LiDAR (Light Detection and Ranging) and radar data have shown
considerable potential for the estimation of vegetation structure metrics
(Bergen et al., 2009; Kacic et al., 2023; Moudrỳ et al., 2023; Simonson
et al., 2012; Torresani et al., 2020) and related biodiversity (Moudrỳ
et al., 2021).

Various methodologies have been developed to take advantage of
these different types of data in order to estimate indicators or metrics of

biodiversity in various ecosystems (Kacic and Kuenzer, 2022; Wang and
Gamon, 2019a). Some approaches aim to directly map specific targets
(e.g. single species or populations) from fine spatial or spectral resolu-
tion data and supervised classification (Immitzer et al., 2012; Sheeren
et al., 2016). Other approaches estimate the functional component of
biodiversity through plant functional traits and their diversity in space
(such as leaf area index, pigment content, leaf nitrogen content, water
content, tree crown diameter, canopy shape index) (Durán et al., 2019;
Rossi et al., 2020; Hauser et al., 2021a) or through the mapping of the
habitats, using information related to climate, geology, topography and
derived land cover types (Foody, 2008; Stein et al., 2014; Wang and
Gamon, 2019b; Sun et al., 2021). Another family of methodologies in-
vestigates the relationship between the in-situ biodiversity and changes
in reflectance captured from optical images (Turner et al., 2003; White
et al., 2010; Nagendra, 2001; Gillespie et al., 2008; Palmer et al., 2002).
The Spectral Variation Hypothesis (SVH) represents a typical example of
this group of approaches, which often extends beyond image-based
methods to incorporate spectral data for robust testing and analysis.

The SVH assumes that variability in the spectral response captured
by optical sensors serves as a proxy for assessing taxonomic information
(Palmer et al., 2002). This hypothesis suggests that areas exhibiting high
spectral heterogeneity (SH) in remotely sensed images correspond to a
greater diversity of ecological niches capable of supporting higher spe-
cies richness compared to areas with low SH (Rocchini et al., 2004).
While initially focused on differences between pixels in an image,
particularly in terms of heterogeneity, the fundamental concept of the
SVH revolves also around spectral differences rather and not only on
pixel-based variation alone. This distinction is significant as not all as-
sessments of the SVH directly pertain to individual pixels; rather, the
central concept and terminology of “spectral variation” emphasize the
examination of spectra rather than pixel-level attributes. Hence, analo-
gous constructs like ‘optical diversity’ (Ustin and Gamon, 2010), ‘spec-
tranomics’ (Asner andMartin, 2009), ‘spectral species’ (Féret and Asner,
2014), and ‘spectral diversity’ (Cavender-Bares et al., 2020), contribute
to a more comprehensive framework for elucidating the SVH and its
associated principles.

The SVH has been extensively tested in diverse conditions over the
past decade, encompassing various ecosystems, remote sensing optical
images, and a range of SH indices. While this approach provides rapid
estimates of spatial patterns that may relate to biodiversity, ecological
diversity, and environmental heterogeneity, at different scales, it is
crucial to acknowledge that its effectiveness may vary across different
conditions and ecosystems (Gamon et al., 2020; Fassnacht et al., 2022).
Numerous investigations, particularly the comprehensive study by
Gamon et al. (2020), have underscored the non-universal applicability
of the SVH, illustrating its context-dependent nature. This body of work
highlights the imperative for adopting methodologies that are attuned to
the scale of analysis (Schmidtlein and Fassnacht, 2017; Möckel et al.,
2016; Rossi et al., 2022; Perrone et al., 2023; Hauser et al., 2021b;
Fassnacht et al., 2022). Such an approach is crucial for enhancing the
efficacy of SVH in biodiversity monitoring, ensuring that the scale of
observation matches the ecological phenomena being studied. Exploring
the conditions and limitations under which the SVH is applicable,
including sensor choice, optical data characteristics, image pre-
processing, heterogeneity indices, and field information, is a central
objective of this study. By investigating where and under which cir-
cumstances the SVH is valid, our study aims to contribute to the
refinement and targeted application of the SVH as a potential guide for
field sampling and an indicator of spatial changes over time.

In this review, we acknowledge the multifaceted nature of biodi-
versity, which can be broadly defined as the variety and variability of
life on Earth, encompassing different levels of organization, from genes
to species to ecosystems. The studies included in our analysis employ a
wide range of biodiversity definitions and metrics, reflecting the diverse
aspects of biodiversity. These include species richness (the number of
different species present in an area), diversity indices such as Shannon’s
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H index or Simpson’s D index, as well as measures of functional and
phylogenetic diversity. This diversity of definitions underscores the
complexity of the concept of biodiversity and highlights the challenges
in using remote sensing data to capture its different dimensions.
Furthermore, it’s essential to consider that biodiversity is not limited to
the species composition within a single habitat (alpha diversity) but also
extends to beta and gamma diversity, which represent the diversity
between habitats and the overall diversity within a landscape or region,
respectively. These different dimensions of biodiversity are crucial for
understanding the ecological and evolutionary processes that shape
natural communities. To clarify these concepts, Table 1 provides defi-
nitions of alpha, beta, and gamma diversity.

Due to the majority of papers focusing on the use of the SVH for
assessing alpha diversity, this review predominantly addresses alpha
diversity. Given the fewer papers addressing beta and gamma diversity
directly, we have dedicated a separate subsection (5.4 Beyond alpha:
harnessing spectral heterogeneity for comprehensive biodiversity
assessment) to discuss these aspects in greater detail, aiming to highlight
their significance and explore their less represented dimensions in SVH
studies.

The effectiveness of the SVH can vary significantly based on the
specific aspect of biodiversity being assessed (e.g., taxonomic vs. func-
tional diversity), the spatial scale of analysis (alpha, beta, or gamma
diversity), and the ecological context of the study area. Thus, when
evaluating the SVH across the diverse studies included in this review, it
is crucial to consider the specific definitions and metrics of biodiversity
employed, as they influence the interpretation of the relationship be-
tween spectral and biological diversity. This consideration is vital for a
fair and nuanced evaluation of the SVH’s applicability across different
ecosystems and for advancing our understanding of how remote sensing
can be effectively utilized in biodiversity monitoring and conservation.

A full review of the application of the SVH for species diversity
monitoring was proposed more than ten years ago by Rocchini et al.
(2010). This field of research was very productive in the past decade,
and different aspects of the SVH were tested, highlighting advantages
and pitfalls of the hypothesis. The aim of this paper is to give an updated
overview of the advances and uncertainties related to the application of
SVH as a proxy for different aspects of biodiversity. The paper is struc-
tured in eight sections: i) an introduction section providing an updated
definition of SVH considering recent advances in remote sensing., ii) a
material and method section defining the literature search, filtering
process with a summary of the selected studies, iii) a review of the
ecosystems for which the SVH was tested, iv) the different remote
sensing data characteristics used to test the SVH, v) a comprehensive
analysis of metrics, tools, and applications within the SVH, vi) the un-
certainties related to the SVH, vii) the future perspective and viii) a
conclusion section.

Finally, we report a table where all the studies reviewed in this work
are summarized by area of study, remote sensing data used, goal of the
study, main outcome, used heterogeneity indices, used field diversity
measure and standardized goodness.

2. Systematic literature review and overview

2.1. Literature review methodology

A systematic literature review on the SVH has been carried out using
the platform Web of Science. To initiate the selection process for studies
focusing on the SVH, we utilized the following search string (our anal-
ysis encompassed papers published until December 2023) within the
Advanced Search Query Builder of Web of Science: (((TS = (“spectral
variation hypothesis” OR “spectral variability hypothesis” OR “spectral
heterogeneity” OR “spectral species” OR “spectranomics” OR “spectral di-
versity” OR “optical diversity“ )) AND TS=(“remote sensing” OR “earth
observation” OR “satellite”)) AND LA = (English)) AND DT = (Article).
The search parameters “TS” stands for topic (restricting to title, abstract,
and keywords), “LA” for language, and “DT” for document type. The
literature review was completed using the same approach in Scopus.

After skimming through the papers retrieved from the initial search,
a total of 131 relevant papers were identified for further analysis. These
articles were then examined thoroughly, and details related to
‘ecosystem/area of study‘, ‘remote sensing data used‘, ‘goal of the study‘,
‘main outcome‘, ‘heterogeneity index used‘and ‘field diversity index‘-
were extracted from each study.

Quantitative measures such as R2 (transformed to R), R, Kendall’s tau
and Spearman’s Rho were extracted to evaluate the association between
SH and biodiversity metrics in each article. To achieve consistency and
comparability across various metrics, we opted for selecting the highest
values in each study. Subsequently, the articles were categorized into
three distinct classes based on their level of goodness. It is important to
note that this classification is not intended to evaluate the overall quality
or merit of the papers, rather, it was created as a means to objectively
classify papers concerning the SVH based on specific quantitative
measures. Class one (“l”) represented articles with low goodness, char-
acterized by R, Spearman’s rho, accuracy, and Kendall’s tau values
ranging from 0 to 0.5. Class two (“m”) encompassed articles with me-
dium goodness, featuring values ranging from 0.51 to 0.65. Lastly, class
three (“h”) included articles with high goodness, displaying values
ranging from 0.66 to 1. This systematic approach allowed for a stan-
dardized and rigorous assessment of the reviewed articles’ quality and
provided insights into their relative performance within the selected
measures of goodness. It is worth noting that this kind of selection, while
deemed the best option to standardize the diverse range of studies
employing numerous quantitative measures, may be considered a limi-
tation of the study.

2.2. Summary of findings

In our literature review, we ascertained a total of 131 publications.
The yearly publication count demonstrates a steady upward trajectory in
the overall number of publications from 2000 to 2023 (Fig. 1). Notably,
there was a peak of publications in 2021 and 2022, indicating the
growing interest in utilizing SH as a remote sensing indicator for
assessing biodiversity. It is widely believed that the initial experimen-
tation of the SVH occurred in 2002, when Palmer et al., (2002) formu-
lated the hypothesis that variability in remotely sensed signal captured
by optical images could be a relevant proxy to assess the biodiversity of
vascular plants in the Tallgrass Praire preserve (Oklahoma, USA) using
aerial panchromatic photography. In this seminal work, the authors
correlated different SH metrics with three biodiversity indices (species
richness, rarity and number of infrequent species) at different scales,
evidencing positive correlations between SH expressed as standard de-
viation of reflectance and both rarity index and number of infrequent
species. However, during our systematic literature review, we recalled
that the SVH was previously conceptualized by Palmer et al. (1999) and
first tested by Gould (2000) in 2000. In his paper, Gould unveiled that
the variability of the Normalized Vegetation Index - NDVI - (using the
standard deviation as heterogeneity index) obtained from Landsat TM

Table 1
Definitions of Alpha, Beta, and Gamma Diversity.

Diversity Type Definition

Alpha
Diversity

The variety of species within a specific habitat or ecosystem. It
measures the local diversity and can include metrics such as
species richness, Shannon’s H index, and Simpson’s D index.

Beta Diversity The change in species composition across habitats within a
landscape. It quantifies the difference between communities,
reflecting the rate of turnover of species from one habitat to
another.

Gamma
Diversity

The total species diversity within a large region or landscape,
encompassing multiple habitats.
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images could be considered a good indicator of landscape heterogeneity
and it correlated well to the plant species richness in the Arctic
ecosystem of Hood River Region, Canada. The study demonstrated that
by synergistically incorporating information on vegetation types
alongside NDVI variability values, a more precise estimation of the plant
species diversity within a specific area could be obtained.

In total, the SVH has been tested in 35 different countries included in
this review (Fig. 2). The United States emerged as the country with the
highest number of study areas, with 21 publications, closely followed by
Italy with 20 publications. India and China followed with 8 publications,
Switzerland and Portugal with 5. Additionally, when considering
countries with a single publication from their study area, a total of 16
countries were identified. These findings highlight the diverse interna-
tional application of the SVHwithin the reviewed articles. It is important
to note that certain publications examining the SVH in simulated eco-
systems, utilizing synthetic data, or focusing on theoretical aspects were
not included in this map. When considering the continental distribution
of publications, Europe accounted for 41%, North America for 23%,
Africa for 16%, Asia for 18%, and South America for 3% of the total
publications.

3. An ecosystem-oriented review of the application of SVH

The review of the SVH encompasses studies conducted in various
ecosystem types (Fig. 3). Forest ecosystems represented the largest
proportion (28%) of the studies analyzed concerning the SVH. Grassland
studies accounted for a significant portion (25%) followed by mixed
types (22%), where the SVH was tested over large areas covering
different ecosystems. Wetlands (7%), coastal regions (5%), Savannah
(5%), agricultural areas (3%), agro-forests (2%), Arctic regions (1%),
marine ecosystems (1%), and soil habitats (1%) also contributed to the
overall body of research.

Notably, a considerable fraction of the studies (approximately 10%)
did not focus on any specific ecosystem but were either reviews, theo-
retical articles discussing the SVH in general terms, or studies investi-
gating certain aspects of the SVH without testing it in real-world
ecosystems.

These percentages reflect the relative distribution of studies across
different ecosystems, highlighting the diverse range of environments
that have been explored in the context of the SVH. Focusing on the forest
ecosystems, the SVH has been studied in various habitats worldwide,
including: tropical forests (Badourdine et al., 2023; Chraibi et al., 2022;
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Fig. 1. Temporal distribution of publications testing the Spectral Variation Hypothesis between 2000 and 2022. The purple trend line shows the constant increase of
SVH-related publications over time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Spatial distribution map showcasing the test locations where the Spectral Variation Hypothesis was tested.
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Gillespie, 2005; Féret and Asner, 2014; Nagendra et al., 2010; Hernán-
dez-Stefanoni et al., 2012; Somers et al., 2015; Asner and Martin, 2011),
Mediterranean forests (Levin et al., 2007; Pacheco-Labrador et al.,
2022), urban forests (Sun et al., 2021), mountain and alpine forests
(Torresani et al., 2018; Torresani et al., 2019; Torresani et al., 2021;
Chitale et al., 2019; Louail et al., 2022; Torresani et al., 2022; Pangtey
et al., 2023), temperate forests (Tagliabue et al., 2020), mangrove forest
(Wang et al., 2022a) and mixed forests (Chitale et al., 2019; Chaurasia
et al., 2020; Khare et al., 2018; Khare et al., 2019; Khare et al., 2021). In
grassland ecosystems the approach has been tested in prairies
(Gholizadeh et al., 2022; Gholizadeh et al., 2018; Palmer et al., 2002;
Schweiger et al., 2018; Wang et al., 2022b; Wang et al., 2018b; Wang
et al., 2016; Wang et al., 2018a), restored (Gholizadeh et al., 2019;
Gholizadeh et al., 2020), semi-natural (Hall et al., 2012; Hall et al.,
2010), mountain/alpine (Rossi et al., 2021; Rossi et al., 2022; Monteiro
et al., 2022; Mohapatra et al., 2019; Sakowska et al., 2019; Imran et al.,
2021), mesic/semi-arid (Zhao et al., 2021; Conti et al., 2021; Polley
et al., 2019) grasslands and also from a world database on protected
areas that encompass different grassland types (Peng et al., 2022). The
category of ‘mixed types‘habitat encompassed all investigations that
examined the SVH not within a single ecosystem, but across various
ecosystems, this concerns studies where the approach was tested over
different habitats (Hauser et al., 2021b; Dahlin, 2016; Pafumi et al.,
2023), regions (Frye et al., 2021; Liccari et al., 2022; Rocchini and
Vannini, 2010; Shahtahmassebi et al., 2017; Warren et al., 2014; Roc-
chini et al., 2008; Schmidtlein and Fassnacht, 2017; Paz-Kagan et al.,
2021), countries (Da Re et al., 2019; Oindo and Skidmore, 2002; Perrone
et al., 2023; Rocchini et al., 2011) and over different states (Mpakairi
et al., 2022; Rocchini et al., 2014; Schweiger and Laliberté, 2022; Jung,
2022). In coastal regions, the SVH has been examined in dune land-
scapes (Malavasi et al., 2021; Marzialetti et al., 2021; Marzialetti et al.,
2020), as well as in various other ecosystems present within coastal
areas (Tassi and Gil, 2020; Onyia et al., 2019; Villoslada et al., 2020;
White et al., 2010). In wetland areas the hypothesis has been tested in
different areas located in Italy (Rocchini et al., 2004; Rocchini, 2007), in
the USA (Taddeo et al., 2019; Taddeo et al., 2021) and in China (Tan
et al., 2023; Tan et al., 2022). Focusing on agricultural areas, different
authors tested the SVH in regions with both high (Tassi et al., 2022) and
low (Rugani and Rocchini, 2017) abundance and diversity of agricul-
tural lands, as well as in abandoned agricultural fields (Aneece et al.,
2017). Similarly, the approach has been tested also in agro-forestry
systems (Chraibi et al., 2021; Rocchini et al., 2018), and in pulpwood

and oil-palm plantations (Hauser et al., 2022). In the Savannah
ecosystem, the hypothesis has been tested only in the African continent,
in particular in Cameroon (Ploton et al., 2022) and in the southern
countries (Namibia, Zimbabwe, South Africa, Zambia) (Madonsela et al.,
2017; Mutowo and Murwira, 2012; Oldeland et al., 2010; Mapfumo
et al., 2016). Within the soil ecosystems we refer to a study by Blanco-
Sacristán et al. (2019), where different SH indices derived from very
high spatial resolution hyperspectral images were utilized as a repro-
ducible method to monitor changes in the diversity of lichen-dominated
biocrust communities. Other authors tested the SVH in other ecosystems
such as arctic (Gould, 2000), marine (Herkül et al., 2013), and virtual
areas (Heumann et al., 2015; Pacheco-Labrador et al., 2023). Finally,
many studies analyzed different theoretical or methodological aspects of
the SVH without testing them over real ecosystems (Rocchini, 2009;
Fassnacht et al., 2022; Rocchini and Neteler, 2012b; Rocchini et al.,
2010; Rocchini et al., 2022a).

Although originally conceived for assessing vegetation diversity, the
SVH has garnered attention in recent studies, extending its application
to the assessment of animal diversity, in particular of ticks (Da Re et al.,
2019), mammals (Oindo and Skidmore, 2002) benthic invertebrates
(Herkül et al., 2013) and birds (Anderle et al., 2023). This became
achievable due to the correlation between SH and environmental het-
erogeneity, which, in turn, intricately intertwines with species diversity.

Fig. 4 provides a comprehensive overview of the application of the
SVH across various ecosystems, with each ecosystem associated with the
level of correlation assessed between remotely sensed variables and in-
situ measured biodiversity metrics. Notably, forest ecosystems have
been extensively studied, and the majority of these studies reported high
goodness, indicating a consistent and robust performance of SVH in
forested environments, while a few studies presented medium or low
goodness. Grassland ecosystems have also been a focal point for SVH
examination; however, with a wide range of relationships, suggesting
that the applicability of SVH in grasslands may present a unique set of
challenges hampering the assessment of biodiversity using remote
sensing. Agricultural and agro-forestry systems have been explored in
only a limited number of studies, yielding diverse outcomes. The former
consistently demonstrated high reliability, whereas the latter exhibited
lower accuracy, indicating potential challenges in applying SVH within
these particular contexts. Savannah ecosystems, despite fewer studies,
consistently showed good results, suggesting promising applications.
The reliability of SVH in soil and arctic ecosystems was indicated by high
accuracy ratings, although the limited number of studies highlights the
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Fig. 3. Percentage of studies testing the Spectral Variation Hypothesis across different ecosystems.
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need for additional research to strengthen reliability. Wetland ecosys-
tems, with a wide range of studies, consistently reported medium to high
goodness, indicating potential effectiveness. Marine ecosystems consis-
tently exhibit good results; however, due to the limited number of
studies, further exploration in these environments is needed. Finally, the
mixed types ecosystem exhibited both high and low accuracy instances,
emphasizing the need for additional research to draw comprehensive
conclusions.

In the elucidation of results across diverse ecosystems, it becomes
apparent that their interpretation is intricately shaped not solely by
inherent ecosystem characteristics but also by a confluence of factors,
including the optical data employed, the heterogeneity index applied,
and the specifics of field data acquisition. The nuanced interplay of these
multifaceted elements will be comprehensively examined and discussed
in detail in the subsequent sections, contributing to a more thorough
understanding of the intricacies involved in the application of the SVH.

4. Remote sensing data used to test the SVH

4.1. Optical data characteristics

In this section, we go into a more detailed examination of the optical
data characteristics employed in assessing SH, aiming to elucidate key
factors influencing the outcomes of biodiversity analyses.

To enhance clarity in our discussion on optical characteristics and
their impact on biodiversity studies, Table 2 provides definitions for
spatial, temporal, spectral, and radiometric scales. This reference helps
navigate the complex relationships between remote sensing data,
biodiversity metrics, and the SVH, offering a concise framework for
understanding how these scales affect biodiversity monitoring through
optical imagery.

Over the past 50 years, numerous Earth observation platforms have
been developed and launched to collect images of the Earth’s surface,

Fig. 4. Number of studies testing the Spectral Variation Hypothesis divided by goodness results. This is based on the highest correlation coefficient found in a study
(R, Spearman’s rho, accuracy, and Kendall’s tau values). Ranging from 0 to 0.5 = Low goodness. From 0.51 to 0.65 = Medium goodness. From 0.66 to 1 =

High goodness.

Table 2
Definitions of Spatial, Temporal, Spectral and Radiometric Scales.

Scale Type Definition

Spatial Scale The grain and extent of spatial data, affecting how spatial
patterns and processes are observed and interpreted.

Temporal Scale Refers to the timing and frequency of data acquisition,
influencing the observation of temporal dynamics.

Spectral Scale The sampling interval, resolution and range of spectral data,
impacting the differentiation and analysis of surface features.

Radiometric
Scale

Pertains to the sensor’s sensitivity to measure the brightness of
surface objects, affecting data quality.

Fig. 5. Percentage of publications across remote sensing platforms (satellite,
UAV, airplane and field).
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with sensors exhibiting various spatial and spectral properties and the
ability to capture repeated acquisitions over time (Crowley and Cardille,
2020; Wulder et al., 2022). According to our analysis (Fig. 5), the dis-
tribution of platforms employed in testing the SVH reveals notable
variations in their prevalence. Satellite-based platforms constitute the
dominant platform, with 62% of studies harnessing their capabilities to
assess the SH. Airborne platforms, encompassing various aerial sensing
methods, contribute significantly with 20% while field data, represent-
ing ground-based measurements, contribute to 10% of the studies. In
contrast, UAVs contribute to a comparatively modest 8% of the studies,
indicating a relatively limited but emerging use of UAVs in SVH
research. The prevalence of the satellite platforms in SVH studies is
attributed to its widespread utilization, facilitated by the accessibility of
free and open-source data (Rocchini and Neteler, 2012a). Satellite data,
being a cost-effective and readily available remote sensing solution,
enable researchers to engage in biodiversity analysis (Turner et al.,
2003). In contrast, airborne acquisitions, which have played a crucial
role in remote sensing analysis, particularly through the utilization of
high spatial resolution orthoimages for conceptualization and testing of
SVH (Waser et al., 2004; Rocchini et al., 2004; Palmer et al., 2002),
require substantial funding for data acquisition and processing. Field
analyses, demanding extensive time and resources, present additional
challenges. The relatively limited representation of the UAV platform in
SVH studies can be attributed to its emerging status in ecological studies,
with just over a decade of development. However, the emergence of
UAVs equipped with specialized sensors and analysis methods has
significantly advanced the field of very high spatial resolution image
analysis for biodiversity monitoring, with SVH proving to be valuable
despite the challenges associated with highly detailed data (Rossi et al.,
2022; Malavasi et al., 2021; Conti et al., 2021; Jackson et al., 2022). As
UAV capabilities continue to advance (Rossi and Wiesmann, 2024;
Torresani et al., 2023a), we will likely witness an increase in their
integration into biodiversity research, fostering a more comprehensive
understanding of SVH and its implications for biodiversity analysis.

Upon in-depth analysis of studies assessing the SVH across diverse
platforms and sensors, clear patterns in accuracy emerge (Fig. 6).
Spaceborne multispectral studies dominate, reporting generally good
results in testing the SVH across diverse ecosystems (Madonsela et al.,

2017; Torresani et al., 2021; Mapfumo et al., 2016; Gillespie, 2005;
Rocchini, 2007). However, some studies within this subset exhibit me-
dium and low goodness of fit, introducing variability in performance
(Rossi et al., 2021; Pacheco-Labrador et al., 2022; Hauser et al., 2021b;
Schmidtlein and Fassnacht, 2017; Monteiro et al., 2022; Fassnacht et al.,
2022). Additionally, studies using hyperspectral spaceborne data
contribute, adding further variability in goodness ratings (Pacheco-
Labrador et al., 2022; Gholizadeh et al., 2022). Airborne platforms with
hyperspectral sensors, though fewer, typically exhibit high goodness
ratings, indicating their effectiveness in SVH testing (Oldeland et al.,
2010; Schweiger and Laliberté, 2022; Wang et al., 2016; Gholizadeh
et al., 2020; Paz-Kagan et al., 2021; Van Cleemput et al., 2023). How-
ever, some studies report instances of low accuracy within this config-
uration (Möckel et al., 2016; Herkül et al., 2013). Fewer studies focus on
using multispectral and panchromatic sensors within airborne platforms
(Rocchini et al., 2022a; Palmer et al., 2002). Field-based studies, espe-
cially those employing hyperspectral sensors at the leaf level, consis-
tently report high accuracy, emphasizing the reliability of field
hyperspectral data in close-range SVH applications (Schweiger et al.,
2018; Thornley et al., 2022). UAV-based studies with hyperspectral
sensors predominantly report good results, showcasing the effectiveness
of UAV platforms in SVH investigations. However, the limited number of
studies using UAV configurations, particularly with multispectral sen-
sors (Tan et al., 2023; Tan et al., 2022; Villoslada et al., 2020; Conti
et al., 2021; Jackson et al., 2022; Malavasi et al., 2021), results in varied
goodness ratings, emphasizing the need for additional research in this
domain. Additionally, it is noteworthy that hyperspectral (imaging
spectroscopy) sensors from UAVs often exhibit suboptimal performance,
possibly due to factors such as poor signal-to-noise ratio and platform
instability.

Among all the used sensors, Landsat has the highest representation
with 31 studies of the total publications (Taddeo et al., 2021; Rugani and
Rocchini, 2017; Perrone et al., 2023; Levin et al., 2007; Madonsela et al.,
2017) (Fig. 7. The total sum of sensors exceeds the total number of
analyzed studies because individual studies often tested different sen-
sors). The series of Landsat satellites represent the longest-running
program (since 1972) for the acquisition of satellite imagery of the
Earth and the Landsat data archive is still underutilized for such

Fig. 6. Number of studies testing the Spectral Variation Hypothesis divided by levels of goodness across different platforms (satellite, airplane, unoccupied aerial
vehicle, field) and sensors. The goodness is based on the highest correlation coefficient found in a study (R, Spearman’s rho, accuracy, and Kendall’s tau values).
Ranging from 0 to 0.5 = Low goodness. From 0.51 to 0.65 = Medium goodness. From 0.66 to 1 = High goodness.
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applications, despite the potential of such data for biodiversity and
natural retrospective ecosystems monitoring. It is followed by Sentinel-2
(Liccari et al., 2022; Hoffmann et al., 2019; Hauser et al., 2021b; Tor-
resani et al., 2021) with 28 studies. (Da Re et al., 2019; Rocchini et al.,
2014; Schmidtlein and Fassnacht, 2017). The Sentinel-2 twin constel-
lation is a relatively newer mission (since 2015) with advanced capa-
bilities, including higher spatial resolution and improved spectral
coverage compared to Landsat. At the time of writing this review, it is
gaining popularity and recognition among researchers, but it has not yet
surpassed the extensive usage and familiarity of Landsat in the field of
the SVH. Hyperspectral field (Thornley et al., 2022; Blanco-Sacristán
et al., 2019; Badourdine et al., 2023) and hyperspectral airborne
(Tagliabue et al., 2020; Somers et al., 2015; Schweiger and Laliberté,
2022; Gholizadeh et al., 2019) sensors accounted for 13 and 24 publi-
cations, respectively. Other satellite sensors such as MODIS (Da Re et al.,
2019, Rocchini et al., 2014, Schmidtlein and Fassnacht, 2017), Quick-
Bird (Hall et al., 2010; Levin et al., 2007; Rocchini et al., 2004), ASTER
(Laurin et al., 2014; Mutowo and Murwira, 2012), Pleiades (Khare et al.,
2018; Khare et al., 2019), IKONOS (Nagendra et al., 2010; Végh and
Tsuyuzaki, 2021), RapidEye (Khare et al., 2018), AVHRR (Oindo and
Skidmore, 2002), CORONA (Shahtahmassebi et al., 2017), DESIS
(Pacheco-Labrador et al., 2023), PlanetScope (Marzialetti et al., 2021),
PROBA-V (Thouverai et al., 2021), SPOT (Lopes et al., 2017) and
Worldview 2 (Mapfumo et al., 2016), together with hyperspectral and
multispectral UAV (Malavasi et al., 2021; Polley et al., 2019; Xu et al.,
2022; Zhao et al., 2021) have less than 10 publications.

Future use of hyperspectral data is anticipated to increase with new
satellites like EnMAP (Environmental Mapping and Analysis Program,
launched in 2022 by the German Space Agency (Guanter et al., 2015))
and PRISMA (PRecursore IperSpettrale della Missione Applicativa,
launched in 2019 by the Italian Space Agency (Guanter et al., 2015,
Loizzo et al., 2018)). Though these missions lack global coverage for
comprehensive biodiversity monitoring, they pave the way for future
global hyperspectral missions, such as NASA’s SBG (Cawse-Nicholson

et al., 2021) and ESA’s CHIME (Nieke and Rast, 2018), expected in the
late 2020s helping on improving biodiversity estimation worldwide.

The availability of optical images measuring surface reflectance in
the visible and infrared domains, with medium to fine spatial resolution
at both local and global coverage, has facilitated the development of
applications that exploit Earth observation data for research purposes
and its transition into operational applications (Crowley and Cardille,
2020). However, using optical remote sensing images for biodiversity
assessment presents several challenges, as highlighted in different SVH
related studies (Rocchini et al., 2010; Fassnacht et al., 2022). These
challenges encompass limited funding and support from public organi-
zations, which may result in heightened dependence on private sector
involvement for data acquisition and the limitations imposed by inad-
equate temporal, spatial and spectral resolution. Overcoming these ob-
stacles becomes crucial for fully unlocking the potential of optical data
in biodiversity studies and gaining deeper insights into ecological dy-
namics. In light of these considerations, this section aims to delve into
the spatial, spectral and temporal characteristics of remote sensing data
within the context of the SVH. By exploring the interplay between these
data characteristics and the SVH, we can gain a deeper understanding of
their implications for biodiversity assessment and monitoring.

Notably, the goodness of fit is not solely dictated by the optical data
characteristics but is intricately tied to the specific ecosystems under
scrutiny. As we transition from the discussion on the prevalence of
different remote sensing platforms and sensors (Fig. 6) and the distri-
bution of studies across these configurations, our analysis further goes
into the nuanced patterns of goodness of fit ratings. This examination,
illustrated in Fig. 8, uncovers ecosystem-dependent variations in the
effectiveness of the SVH for biodiversity assessments.

The Figure shows distinctive patterns across ecosystems, underlining
the impact of the optical characteristics on the SVH and biodiversity
assessments. In forests, there is a prevalent reliance on spaceborne
multispectral studies, showcasing the potential of coarser spatial reso-
lution data in such ecosystems (Torresani et al., 2019; Gillespie, 2005).

Fig. 7. Distribution of publications across remote sensing platforms (satellite, airplane, unoccupied aerial vehicle, field) with their spectral sampling, spatial res-
olution and revisit frequency. Satellite sensors are featured within the grey dotted box.
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Notably, while airborne hyperspectral studies show a robust correlation
(Chaurasia et al., 2020; Wallis et al., 2023), they are less abundant
compared to spaceborne multispectral studies. Field hyperspectral
studies, though less frequent, consistently exhibit strong correlation and
high goodness (Schweiger et al., 2018) across all the ecosystems. In
grassland ecosystems, airborne and spaceborne studies, show low to
medium goodness (Möckel et al., 2016; Monteiro et al., 2022),
remarking the importance of high spatial resolution data for a successful
application of the SVH (Wang et al., 2018a). Conversely, studies utiliz-
ing UAV (Polley et al., 2019; Wang et al., 2018a) and field optical data
(Gholizadeh et al., 2018; Thornley et al., 2022), which benefit from
higher spatial resolution, tend to report higher accuracy. While UAV
technology holds great potential for enhancing our understanding of
spectral diversity, further advancements are necessary to ensure its
consistent and reliable application in biodiversity assessments. An
interesting aspect, particularly within grassland studies, is the crucial
role of spectral information, more specifically the number of spectral
features sampled. Sole reliance on multispectral and panchromatic
datasets, despite possessing high spatial resolution, tends to yield only
moderate accuracy (Palmer et al., 2002). These findings highlight that
both spatial and spectral characteristics are critical in remotely esti-
mating plant diversity in grassland ecosystems. The work of Gamon
et al., (2020) highlight the complexity of these scale interactions, sug-
gesting that the interplay between spatial and spectral scales can
significantly influence biodiversity assessment outcomes. This nuanced
understanding underscores the importance of a scale-informed
approach, integrating both dimensions to effectively capture the di-
versity within these ecosystems.

4.2. Spatial resolution

With spatial resolution, we refer to the spatial grain (pixel size) of the
optical data used to assess the SH. The choice of the appropriate spatial
resolution for remote sensing information should be discussed specif-
ically in light of the objectives of any type of ecological application
(Moudrỳ et al., 2023; Rocchini et al., 2023b). As highlighted by
Nagendra and Rocchini (2008), finer spatial resolution does not sys-
tematically benefit remote sensing applications. The need for spatially
detailed images is indeed, in many cases, a double-edged sword,
particularly when focusing on complex and heterogeneous systems. In

the specific context of SVH, the choice of an appropriate spatial reso-
lution is legitimately a core uncertainties to address, as it is the main
driver of spatial heterogeneity of spectral information. Images with
coarse spatial resolution result in a mixed signal at pixel scale, inte-
grating the spectral signature of different surfaces (e.g. vegetation, soil,
water bodies), homogenizing the signal and causing difficulties in
clearly identifying boundaries between spatial entities (individuals,
vegetation types, ecosystem types) (Rocchini et al., 2010; Nagendra
et al., 2010; Feilhauer et al., 2021). Fine spatial resolution may lead to a
level of details within spatial entities causing strong heterogeneity, for
example when pixels allow distinction between branches and leaves:
when the dimensions of individuals of interest from an observed system
(e.g. trees from a forest) are larger than pixel size, the variability be-
tween neighboring pixels increases along with spectral entropy “by
increasing the level of intra-class variation and introducing spatial hetero-
geneity resulting from in-shadow pixels” (Rocchini et al., 2010).

Drawing from Gamon et al. (2020), it’s critical to recognize that the
interplay of spatial, temporal, spectral, and angular resolutions in
remote sensing data profoundly affects our ability to detect and interpret
biodiversity. The alignment of these scaled dimensions with the bio-
logical scales of diversity necessitates a sophisticated understanding
beyond mere resolution enhancement. Segmentation methods may
provide a promising avenue to exploit high spatial resolution imagery to
match and box-average the area (e.g. canopy in forest ecosystem) of
interest (Zheng et al., 2022). However, the overarching complexity
suggests that while high spatial resolution can enrich texture metrics
and take advantage of modern analytical techniques, such as convolu-
tional neural networks (Schiefer et al., 2020), or enhance impure pixel
masking (Gholizadeh et al., 2018), its efficacy is inherently linked to a
comprehensive, scale-aware approach in biodiversity monitoring.

4.2.1. SVH across different spatial resolution
Various studies investigated the influence of the spatial resolution on

the relationship between SH and biodiversity, in order to provide rec-
ommendations and identify limitations of available remote sensing data
when studying specific ecosystems (Gamon et al., 2020; Rocchini, 2007;
Khare et al., 2019; Wang et al., 2018a)). However, it is worth noting that
these studies have reported contrasting results, highlighting the complex
role of spatial resolution in the assessment of the SVH. For instance,
some research (Torresani et al., 2019; Rossi et al., 2022; Torresani et al.,

Fig. 8. Number of studies testing the Spectral Variation Hypothesis across different ecosystems using different platforms and sensors and levels of goodness (in this
case the average value of all the studies per ecosystem). This was based on the highest correlation coefficient found in a study (R, Spearman’s rho, accuracy, and
Kendall’s tau values). Ranging from 0 to 0.5 = Low goodness of fit. From 0.51 to 0.65 = Medium goodness of fit. From 0.66 to 1 = High goodness of fit.
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2018; Wang et al., 2018a) has indicated that optical data with medium
to high spatial resolutions, like those obtained from Sentinel-2 or UAVs,
outperform data from sensors with coarser resolutions, such as Landsat
8, in correlating SH with biodiversity metrics. Conversely, other studies
(Khare et al., 2018; Rocchini, 2007) have presented a case for the utility
of lower spatial resolution data in certain contexts. However, the chal-
lenge for deriving such conclusions is that differences between sensors
happen at multiple dimensions, spatial resolutions will differ but at the
same time the spectral layout differs. Some attempts have been made to
isolate the impact of spatial resolution on functional diversity patterns.
For example, Helfenstein et al. (2022) used both Sentinel-2 and APEX
data, with the latter spectrally convolved to match Sentinel-2 but at its
native spatial resolution. The study concluded that the spectral prop-
erties of Sentinel-2 data allow for physiological trait derivation, and that
spatial resolution has a profound impact on diversity metrics
(Helfenstein et al., 2022). The diversity of findings reveals the signifi-
cance of understanding the underlying factors contributing to these
disparities. In some cases, as previously stated and showed in Fig. 8,
medium-high spatial resolution optical data have proven effective for
capturing SH and assessing biodiversity. This preference often arises
when researchers focus on ecosystems (e.g. forests), where such spatial
resolutions align with the unique SH characteristics of these environ-
ments. On the contrary, in other contexts, when the SH is estimated at
broader scale (e.g. over different ecosystems), coarser spatial resolution
data is favored. Additionally, as also shown in Fig. 8, very high spatial
resolution data has been commonly applied especially in ecosystems like
grasslands, where finer spatial details are necessary for a comprehensive
assessment of the SH (Wang et al., 2018a). This variability of finding
underscores a deeper complexity in how spatial resolution impacts the
assessment of the SVH, highlighting the importance of matching the
scale of remote sensing data with the biological scales of diversity under
investigation. Thus, the ‘optimal’ spatial resolution is contingent upon
specific study goals, the ecological context of the targeted ecosystem,
and the methodological approach employed. This perspective aligns
with the broader understanding that the selection of spatial resolution in
remote sensing studies is not merely a technical decision but a funda-
mental consideration that requires careful alignment with the ecological
phenomena being studied and the specific objectives of the research.

4.2.2. Sampling design: The effect of plot size in the SVH
Another important aspect of spatial scale that influence the rela-

tionship SH-biodiversity is related to the plot size, often referred to as
the ‘grain effect’. This topic represents an often-overlooked aspect that
affect the assessments of different aspect of biodiversity (Gholizadeh
et al., 2022). Most of the studies that tested this topic (Gholizadeh et al.,
2022; Oldeland et al., 2010; Rossi and Gholizadeh, 2023; Robertson
et al., 2023; Hauser et al., 2021a) within the SVH for the assessment of
vegetation diversity, showed that a stronger relationship between SH
and plant diversity was observed for larger sampling plots, likely
attributed to broader ranges in species and SH values across larger areas.
The determination of plot size, or more broadly, the field sampling
design, in remote sensing studies of plant diversity, is frequently
established and concluded before planning remote sensing data collec-
tion or is conducted independently, often addressing goals unrelated to
the objectives of the remote sensing study. In this light, as highlighted by
Gholizadeh et al. (2022), the disconnect between remote sensing and
field sampling design is considered a missed opportunity. Remote
sensing is probably the only feasible means to provide globally contin-
uous spatial estimates of biodiversity, extending beyond small plots.
Consequently, it is crucial to pay specific attention to field data collec-
tion to better match field observations to the pixel size (Végh and
Tsuyuzaki, 2021) of remote sensing data and develop standardized field
protocols (Pacheco-Labrador et al., 2022).

4.3. Spectral resolution

4.3.1. Spectrum considerations in the SVH
Spectral characteristics include the spectral range, which encom-

passes the wavelengths covered by the sensor, the number of spectral
bands (or the sampling interval for hyperspectral sensors), and the
spectral resolution. As an example, hyperspectral images combine a high
number of contiguous spectral bands and high spectral resolution,
allowing for the measurement of continuous surface reflectance prop-
erties and the characterization of multiple vegetation traits (Feilhauer
et al., 2018). Increasing spectral sampling and/or spectral resolution
may enhance the capacity to distinguish and discriminate among species
or communities with different spectral signatures, influenced by a
complex combination of biophysical properties such as leaf chemistry
and canopy structure (Rocchini et al., 2010). However, the number of
bands alone is not necessarily an indicator of improved performance.
Properly positioned bands can capture specific spectral features relevant
to the targeted vegetation or environmental parameters, optimizing the
sensor’s sensitivity to key signals and minimizing spectral redundancy.
Therefore, careful consideration of band placement is essential for
maximizing the effectiveness of spectral data acquisition and analysis in
remote sensing applications (Rocchini, 2007).

While the choice of spectral characteristics, such as the number and
placement of spectral bands, is critical for analyzing SH and biodiversity
through the SVH, it’s essential to balance between ecosystem-specific
adaptations and the need for methodological standardization.
Different methodologies have been adopted in different SVH studies
giving back different results about the spectral resolution of the data.
Some studies focused on identifying optimal spectral regions when
estimating biodiversity metrics using a spectral diversity, Gholizadeh
et al. (2018) found that spectral bands near 680 nm—associated with
chlorophyll absorption—played a significant role in distinguishing areas
of varying vegetation diversity in prairie ecosystems, suggesting that
targeted spectral analyses may offer enhanced discriminative power.
However, at coarser spatial resolutions, the NIR region (700–914 nm)
became more informative, indicating that the choice of spectral range
and resolution can greatly affect the accuracy of biodiversity estimates.
Similarly, Wang et al. (2018b) observed that the use of full-range
hyperspectral data over the entire spectrum (400 to 1000 nm) did not
necessarily confer additional benefits for plant diversity assessment,
indicating that the thoughtful selection of spectral bands could be more
critical than the sheer quantity of spectral information. They also found
that the most informative spectral regions for estimating species richness
varied with spatial resolution, highlighting the importance of selecting
appropriate spectral bands tailored to the spatial scale of the study.

Other studies focused on the employment of conventional ordination
techniques like PCA (Da Re et al., 2019; Rocchini et al., 2004; Herkül
et al., 2013). Some others focused on the use of vegetation indices, such
as the NDVI which have demonstrated the capacity to capture subtle
variations in reflectance associated with specific leaf traits of different
species (Torresani et al., 2019; Oindo and Skidmore, 2002; Helfenstein
et al., 2022). Others have used regression or physically-based models to
derive ‘optical traits’ as ecologically measurable intermediates before
calculating diversity metrics (Durán et al., 2019; Torresani et al., 2021;
Hauser et al., 2021a; Hauser et al., 2022). All these methods underscores
the adaptability of SVH analyses to different ecological contexts and
spectral data characteristics. However, this adaptability raises concerns
regarding the comparability of results across studies, emphasizing the
challenge of achieving a standardized approach that can be uniformly
applied while still accounting for the unique spectral signatures of
different ecosystems. To reconcile this, a dual approach is recommended
where methodological flexibility is maintained for ecosystem-specific
investigations, allowing researchers to tailor their spectral analysis to
the particular traits and conditions of their study area. Simultaneously,
efforts should be made to develop and agree upon a set of core spectral
metrics and methodological standards that can facilitate cross-study
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comparisons and aggregate analyses. This approach would involve the
establishment of benchmark spectral characteristics and analysis pro-
cedures that are broadly applicable across diverse ecosystems, thus
providing a common framework for evaluating the SVH. By doing so, we
can enhance the utility of SVH analyses in biodiversity research,
enabling more consistent and comparable insights into the relationships
between SH and species diversity across different ecological contexts.

In most of the cited studies, it turned out that spatial, rather than
spectral, resolution was the limiting factor in their analyses. Rossi et al.
(2022) proposed two primary explanations for the relatively lower sig-
nificance of high spectral resolution compared to high spatial resolution.
First, spectral bands are highly correlated and spectral metrics condense
the spectral information making the full information highly redundant
and biased towards some spectral features. The second explanation,
which is partially discussed in Section 6 (‘Uncertainties related to the
SVH‘), focuses on the influence of canopy structure on the relationship
between SH and species diversity. Reflectance measurements taken over
vegetation patterns encompass information about leaf traits, canopy
structure, and their interactions. For instance, specific regions of the
electromagnetic spectrum (e.g., visible and near-infrared) exhibit strong
correlations with grassland canopy variables (e.g., total biomass),
allowing the capture of most spectral variance between plants through
the reflectance of a few bands within this spectral region.

4.4. Temporal resolution

When estimating biodiversity using remote sensing data within the
SVH, it is crucial to consider the temporal dimension, as the temporal
resolution of optical remote sensing data plays a significant role in
capturing dynamic changes in ecosystems and providing valuable in-
sights into the temporal patterns of species and communities. With
temporal resolution here we do refer to the frequency at which data are
collected over the same area and the specific timing of these acquisi-
tions, including considerations of daily and seasonal variations. This
definition underscores the importance of capturing both periodic
changes in ecosystems, such as phenological shifts, and more abrupt
ecological events, such as disturbances. Temporal resolution, therefore,
not only dictates how often an ecosystem is observed but also when
these observations occur, to ensure relevant biological phenomena are
accurately represented in the data. The relationship between SH
captured by optical images and field observations of biodiversity can
exhibit significant seasonal fluctuations, influenced by factors such as
phenological changes (Wang et al., 2023), structural variation (Dronova
et al., 2021) and physical effects like shading (Lopatin et al., 2019). To
establish a meaningful connection between spectral variations and
taxonomic or functional diversity, it is important to select an acquisition
period that maximizes the discrimination between different species or
groups of species. Various studies (Torresani et al., 2019; Wang et al.,
2022b; Pangtey et al., 2023; Rahmanian et al., 2023) explored the

impact of the seasonal variation of SH in the context of the SVH. Their
findings underscore the necessity of analyzing complete time series of
remote sensing data to take advantage of the temporal differences
among species and communities effectively. This recurring pattern is
ascribed to shifts in leaf phenological conditions, alterations in leaf
chemistry, and changes in canopy structure. Recently Fassnacht et al.
(2022) discussed this aspect in more depth, exploring the influence of
daily, seasonal, and stochastic dynamics on Earth’s ecosystems and the
corresponding variations in optical traits captured by remote sensing
sensors. The authors stated that the daily variations, such as changes in
leaf orientation, can affect spectral signatures, especially in airborne
data or with orbit shifts in polar-orbiting satellites. Seasonal variations
pose challenges to SVH due to changes in optical traits like leaf area
index and pigments, influenced by flowering events and phenology.
Intraspecific variations, such as those due to health, growth form,
environmental adaptations, and stress events, further complicate spec-
tral variation analysis in larger spatial extents. As an example we elab-
orated in Fig. 9 the data of Feilhauer and Schmidtlein (2011) showing
how grassland exhibit different spectral behaviors depending on their
phenological state during a vegetating season, affecting spectral varia-
tion measures and potentially the SVH results.

In addition to the various stages of leaf development, farming prac-
tices (e.g. in managed ecosystems) play a significant role in shaping the
SH and its relationship with species diversity (Rossi et al., 2021; Gho-
lizadeh et al., 2020). Particularly, within grasslands, anthropogenic
activities such as burning, grazing, mowing, fertilizing, and harvesting
significantly alter SH. Such alteration, i.e., the temporal component of
spectral diversity, can be an important predictor of plant diversity (Rossi
et al., 2024). In the context of SVH research in forest ecosystems, most
studies integrating remotely sensed spectral diversity solely made use of
mono-temporal measurements from remote sensing and field data
(Kacic and Kuenzer, 2022), thus only assessing the SVH at a single
temporal snapshot and not investigating aforementioned temporal
influences.

Concluding, the impact of daily and seasonal dynamics on optical
traits and SH is very strong, emphasizing the significance of considering
phenological behavior and natural and anthropogenic stressors when
interpreting spectral variation metrics to ensure precise biodiversity
assessments using optical data. Analyzing the complete time series of
remote sensing data, instead of relying solely on single acquisitions,
proves valuable in utilizing temporal differences among species and
communities (Rossi et al., 2021; Rossi et al., 2024). Additionally,
frequent revisits and acquisitions are crucial, particularly in regions with
high cloud cover like tropical rainforests (Drusch et al., 2012). Statistical
methods that partition variance into various factors (Wang et al., 2022b;
Rossi et al., 2021), can help to explore these complex interactions be-
tween spatial, spectral, and temporal scales, offering a methodological
framework for disentangling the influences of phenology and manage-
ment influence on spectral diversity and improving the reliability of

Fig. 9. Grassland seasonal development and related spectral signals of the canopy. Data are taken from Feilhauer and Schmidtlein (2011).
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remote sensing as a tool for biodiversity monitoring.

5. A comprehensive analysis of metrics, tools, and applications
in biodiversity studies

5.1. Assessing spectral heterogeneity: Metrics and the spectral species
concept

The choice of a suitable metric for evaluating SH has proven to rely
on the available remotely sensed data, the ecological goal, and the
analytical approach employed to establish the relationship between SH
and biodiversity. Some metrics have shown to be more appropriate for
the assessment of diversity gradients over very large areas (e.g. global
scale) while in other cases local diversity patterns may be of interest.

Fig. 10A shows the distribution of the reviewed studies across the
spectral indices used to asses the SH. The coefficient of variation showed
to be the most used index for the assessment of the SH accounting for
approximately 16% of the publications. The substantial influence of the
Rao’s Q index, contributing around 13%, is particularly noteworthy
given its relatively recent introduction to the field (Rocchini et al.,
2017), this rapid adoption underscores its substantial influence in SVH

studies. Other metrics make smaller but still noteworthy contributions:
the standard deviation and the Shannon index, the latter largely used in
ecology as index for species diversity, make up approximately 9% and
7% of the publications, respectively. The mean euclidean distance and
the convex hull area and volume are also noteworthy, with contributions
of around 7% and 6%, respectively. Other metrics like spectral species
(that encompass also the spectral richness and communities clustering),
the spectral variance (that include the indices that measure the spectral
divergence and distance) make smaller but still noteworthy contribu-
tions, each representing around 5–4% of the publications. Several other
indices, including Simpson’s D index, Renyi index, range, spectral alpha
diversity index, spectral entropy, spectral evenness, spectral rarefaction,
Berger-Parker index, spectral cumulative residual entropy, Hill and
Pielou indices, contribute each approximately 1–2%, indicating their
presence in the literature but with comparatively lower prominence.
Another 16% of the publications are represented by other heterogeneity
indices that have been used only once in the literature.

Some of the most used metrics, such as the Rao’s Q index used with a
single dimensional mode (Hauser et al., 2021b; Torresani et al., 2021;
Pangtey et al., 2023) or the mean distance from centroid (Rocchini et al.,
2004) (Table 3) are more appropriate when computed from low spectral

Fig. 10. Distribution of Publications across heterogeneity indices used to assess the Spectral Heterogeneity.
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dimension information such as panchromatic images, singular optical
bands, spectral indices or individual layers resulting from feature se-
lection or feature extraction applied on multispectral sensors (Rocchini
et al., 2010; Torresani et al., 2019; Torresani et al., 2020). On the other
hand, other metrics such as the spectral convex hull area/volume
(Gholizadeh et al., 2018; Hauser et al., 2021b), the coefficient of vari-
ation (Lucas and Carter, 2008) and the spectral angle mapper/average
(Gholizadeh et al., 2022) have been developed to harness the full
spectral information available in multispectral and hyperspectral images
(see Table 3 for a comprehensive description of these most used indices).
These metrics are essential for preserving and exploiting the wealth of
spectral data that might otherwise be lost when using unidimensional
indices, especially in scenarios involving multispectral or hyperspectral
sensors.

According to our analysis, 41% of the studies explored diverse het-
erogeneity metrics, showcasing a nuanced approach to assessing SH. In
contrast, 59% of the studies focused on a single metric, indicating a
preference for simplicity or a targeted investigation into specific aspects
of SH. This diversity in the approach to metric selection underscores the
complexity of SH assessments and suggests that researchers adopt varied
strategies based on their goals and the available remotely sensed data.

As suggested by Fassnacht et al. (2022), an essential consideration
concerning heterogeneity indices pertains to the careful selection of
appropriate spectral metrics for evaluating biodiversity. This choice
holds significant importance because certain metrics can exhibit
heightened sensitivity to extreme spectral values stemming from diverse
sources, including spectral noise, bare ground reflectance, and illumi-
nation factors (Gholizadeh et al., 2018). As noted by Rossi et al. (2022),
metrics such as convex hull volume and to a lesser extent, the coefficient
of variation exhibit pronounced susceptibility to extreme values and, for
this reason, must be used judiciously, as they may lead to an over-
estimation of SH due to the presence of deceased biomass, soil and
shadows. Conversely, alternative metrics like the spectral species rich-
ness demonstrate reduced sensitivity to extreme values (Perrone et al.,
2023, 2024), offering a more pragmatic approach to biodiversity
analysis.

Complementing these metrics, the spectral species richness, based on
the spectral species concept stands out as a noteworthy method for
assessing biodiversity. This concept, developed by Féret and Asner
(2014) is based on the idea that the continuous nature of spectral in-
formation can be transformed into discrete spectral species through
unsupervised clustering methods (Féret and Asner, 2014). Hence, the
spectral space is divided into distinct clusters, with each cluster repre-
senting a spectral species. The goal is to assign each pixel to a specific

cluster, essentially treating each pixel as an individual or a member of a
spectral species. This discretization allows for the computation of
various diversity metrics, similar to plant diversity metrics. As empha-
sized by Rocchini et al. (2022a), the initial theory behind the spectral
species concept defines a species by its unique spectral signature
(resulting in a ‘pure pixel’), making it detectable within the pixels of a
spectral image. However, in practice, the presence of multiple species
(or habitats (Rocchini et al., 2021a)) within a single pixel (mixed pixel),
due to varying spatial resolutions, complicates the assignment of spec-
tral information to specific species, bringing a level of uncertainties to
the approach. Rossi and Gholizadeh (2023) addressed this issue by
combining the spectral species concept with spectral unmixing, thus
considering the spectral signature of each pixel as the mixture of mul-
tiple spectral species. The approach suffers from other conceptual lim-
itations for operational applications. The clustering algorithm and the
number of clusters needs to be arbitrarily set by users, this suggests that
the number of clusters should be adjusted based on an expected overall
diversity expected from an area/landscape, if comparing outputs of the
method produced independently from various landscapes. Furthermore,
the approach may introduce bias, especially in highly diverse ecosys-
tems since the fixed definition of spectral species can lead to over-
estimation in sites with low taxonomic diversity. Researchers, such as
Lopes et al. (2017) and Rocchini et al. (2021a), explored spectral species
for assessing species diversity in grasslands and mapping “spectral
communities” across Europe, respectively. Gholizadeh et al. (2020)
applied hyperspectral clustering to estimate alpha diversity, incorpo-
rating a “virtual dimensionality” approach to estimate the number of
spectral species. These efforts demonstrate the utility of spectral species
in diverse ecosystems and spatial scales.

5.2. Open-source tools for spectral heterogeneity assessment

Recently, various authors have developed open-source packages
facilitating the estimation of diverse heterogeneity indices (Table 4).
These accessible solutions not only streamline the process of SH
assessment but also contribute to the widespread adoption of SVH in
biodiversity studies. This accessibility fosters a collaborative and in-
clusive approach, empowering researchers with user-friendly tools to
delve into the intricate dynamics of SH across diverse ecosystems.
Rocchini et al. (2021b) developed the R rasterdiv package designed for
computing heterogeneity indices (BergerParker, copNDVI, CRE, Hill,
paRao, Pielou, Rao, RaoAUC (Thouverai et al., 2022), Renyi, Shannon’s
H) using remotely sensed data. The rasterdiv is supported by firmly
grounded in information theory, utilizing reproducible open-source al-
gorithms (Thouverai et al., 2021). Additionally, Tassi et al. (2022)
developed an open-source Python application, spectralrao-monitoring,

Table 3
Characteristics of the most used heterogeneity indices.

Heterogeneity index Characteristics

Coefficient of variation Measures relative variability; ratio of the standard
deviation to the mean, expressed as a percentage

Rao’s Q index Combines abundance and pairwise dissimilarity of pixel
values; captures diversity by considering pixel values
proportional abundances and their differences

Standard deviation Measures absolute variability in spectral values; captures
the dispersion of pixel values around the mean; higher
values indicate greater heterogeneity

Mean distance from
centroid

Average distance of all pixel values in a dataset (e.g.,
raster) from the mean centroid value; assesses the
compactness and spread of pixel values in a spectral space;
higher values indicate more spread and heterogeneity

Shannon’s H index Quantifies pixel value diversity by considering richness
and evenness; higher values indicate greater diversity;
commonly used to measure entropy in ecological studies
but also used in remote sensing

Convex hull/volume Encompasses the smallest convex set containing all points
in a dataset; measures the spatial extent and volume
occupied by spectral points; larger volumes indicate
greater spectral diversity and heterogeneity

Table 4
Open-source tools for spectral heterogeneity assessment in biodiversity studies.

Package
Name

Language Key Features Source Reference

rasterdiv R Computes various
heterogeneity indices
from raster datasets

CRAN (Rocchini
et al., 2021b)

spectralrao-
monitoring

Python Calculates the Rao’s Q
diversity index from
raster datasets

GitHub (Tassi et al.,
2022)

biodivMapR R Computes alpha and
beta diversity from
raster datasets

GitHub (Féret and de
Boissieu, 2020)

stdiversity R Calculates spectral
diversity over time
from optical
information

GitHub (Rossi et al.,
2021)

unmix R Assesses spectral
diversity at subpixel
level from optical
information

GitHub (Rossi and
Gholizadeh,
2023)
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with the intention of harnessing the faster computational power offered
by Python for the calculation of the Rao’s Q diversity index. Féret and de
Boissieu (2020) developed the R biodivMapR package, largely tested in
different studies (Pafumi et al., 2023; Robertson et al., 2023; Ploton
et al., 2022; Zhang et al., 2023) and designed for computing alpha (using
the Shannon’s H and Simpson’s D indices) and beta diversity (using the
Bray–Curtis dissimilarity) under the scope of the SVH based on the
spectral species concept. Finally, other R packages are available on
GitHub, for example tools for calculating the spectral diversity over time
and at the subpixel level (https://github.com/RossiBz/stdiversity and
https://github.com/RossiBz/unmix).

Table 5 illustrates the diversity of open-source tools available for
biodiversity assessment, focusing on packages that offer advanced
methods for exploring diversity through traits and facilitating the esti-
mation of alpha and beta diversity. Vegan, a comprehensive package for
community ecology, enables the computation of various diversity
indices, FD focuses on measuring functional diversity from traits data,
highlighting the importance of trait-based approaches in understanding
biodiversity patterns, picante offers tools for integrating phylogenetic
and trait diversity into ecological research while gdm facilitates Gener-
alized Dissimilarity Modeling to analyze and model spatial patterns of
biodiversity, taking into account ecological distance and environmental
gradients. These packages significantly enhance the analytical capacity
of researchers, allowing for a deeper exploration of the ecological and
evolutionary underpinnings of biodiversity. Through their extensive
features, these tools aid in uncovering the multifaceted nature of
biodiversity and its critical role in ecosystem health and resilience,
underlining the necessity of incorporating diverse methodological ap-
proaches in biodiversity studies.

5.3. Field diversity data

A comprehensive review of field species diversity indices reveals a
diverse landscape of metrics employed in biodiversity studies (Fig. 10
B). Among these, species richness stands out as the most frequently
utilized, accounting for around 32% of the indices surveyed. Following
closely behind is Shannon’s H, representing around 28%, emphasizing
the significance of information entropy in capturing species diversity
patterns. Simpson’s D contributes to around 12% of the diversity
indices, offering insights into community dominance. A notable 11% is
dedicated to various other indices (such as infrequent species index,
Pielou’s J, Species rarefaction), reflecting the richness of approaches in
assessing biodiversity. The consideration of native species, families, and
richness collectively contributes around 3%, underscoring the impor-
tance of understanding the composition of ecosystems. Also species
abundance and phylogenetic diversity/index occupy 3%, highlighting
the attention given to both population sizes and evolutionary relation-
ships. Alien species richness, species cover, rarity index, functional di-
versity index, and evenness collectively contribute to the remaining 8%,
showcasing the breadth of ecological dimensions covered in SVH-related
studies.

While species richness emerges as the most frequently utilized metric
in the comprehensive review of field species diversity indices, it is
noteworthy to acknowledge different research findings that challenge
the conventional emphasis on this metric. Different studies (Oldeland
et al., 2010; Torresani et al., 2019; Xu et al., 2022; Wang et al., 2018b)

suggest that abundance-based measures, exemplified by the Shannon’s
H Index, demonstrate a stronger relationship with SH than for example
species richness alone. These indices appear to align with vegetation
structure, considered a subset of environmental heterogeneity,
providing a nuanced reflection of SH nuances (Oldeland et al., 2010;
Foody and Cutler, 2003). This perspective further supported by the work
of Madonsela et al. (2017), underscore the idea that SH tends to be more
strongly correlated with dominant or more abundant species, which play
a pivotal role in shaping the landscape, compared to rare and occasional
species that are only partially captured by richness metrics.

5.4. Beyond alpha: Harnessing spectral heterogeneity for comprehensive
biodiversity assessment

Beyond its foundational role in estimating within-community di-
versity (alpha), the SVH has evolved to encompass a broader spectrum,
with around 15% of our review studies extending its application to
assess beta and or gamma diversity, as well as venturing in different
ecological areas. Beta diversity, representing the turnover of species
composition between different communities or localities, plays a crucial
role in understanding ecological transitions and landscape heterogene-
ity. The application of SVH to beta diversity estimation involves
assessing variations in spectral signatures across landscapes (Rocchini
et al., 2019; Schweiger and Laliberté, 2022). Different habitats, char-
acterized by distinct species compositions, are expected to exhibit higher
SH. This approach allows researchers to quantify and visualize the
turnover of species as reflected in the diversity of spectral patterns. The
majority of research exploring beta diversity within the context of the
SVH primarily focuses on forest ecosystems (Arekhi et al., 2017; Chraibi
et al., 2022; Féret and Asner, 2014; Hernández-Stefanoni et al., 2012;
Khare et al., 2019; Laliberté et al., 2020; Robertson et al., 2023), with
subsequent studies expanding into grasslands (Rossi et al., 2021; Polley
et al., 2019; Gholizadeh et al., 2020) and over mixed types of habitat
(Hoffmann et al., 2019; Liccari et al., 2022; Pafumi et al., 2023;
Schweiger and Laliberté, 2022).

To assess beta diversity in various ecosystems, studies have utilized
different types of remote sensing data, including Landsat (Arekhi et al.,
2017; Hernández-Stefanoni et al., 2012; Khare et al., 2019), Sentinel-2
(Chraibi et al., 2021; Hoffmann et al., 2019; Liccari et al., 2022;
Pafumi et al., 2023; Rossi et al., 2021), airborne hyperspectral
(Schweiger and Laliberté, 2022; Robertson et al., 2023; Laliberté et al.,
2020; Gholizadeh et al., 2020) and UAV hyperspectral imagery (Polley
et al., 2019). These tools have proven effective in capturing vegetation
physiological changes, species turnover, and habitat diversity by
analyzing spectral variables and heterogeneity. Particularly, coarse
satellite data suggest that single pixels might represent plant commu-
nities, emphasizing beta diversity estimations based on pixel differences
rather than within-pixel diversity (Khare et al., 2021; Khare et al., 2019;
Hoffmann et al., 2019).

Rocchini et al. (2018) discussed the methods for estimating beta
diversity from remote sensing data, including different approaches. The
first incorporate multivariate statistical analyses and ecological dis-
tances like the Bray-Curtis dissimilarity, largely used in different studies
(Baldeck and Asner, 2013; Chraibi et al., 2021; Chraibi et al., 2022; Rossi
et al., 2021; Rocchini et al., 2022b), the Jaccard distance that measures
species overlap between habitats, emphasizing presence-absence data

Table 5
Open-source tools for assessing diversity via traits and methods for alpha and beta diversity estimation.

Package Name Language Key Features Reference

vegan R Community ecology package, diversity indices (Oksanen, 2015)
FD R Functional diversity metrics from traits (Laliberté et al., 2014)
picante R Phylogenetic and trait diversity (Kembel et al., 2010)
gdm R Generalized Dissimilarity Modeling (Mokany et al., 2022)
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(Gholizadeh et al., 2020; Arekhi et al., 2017), and the Hellinger distance
(Liccari et al., 2022; Schweiger and Laliberté, 2022), more sensitive to
rare species. Another similar approach based on a detrended corre-
spondence analysis was tested by Hernández-Stefanoni et al. (2012))
that visually represents species turnover across gradients, contributing
to understanding spatial biodiversity variation. Rocchini et al. (2018)
highlight also the spectral species concept (discussed in section 5.1) as
another approach for assessing beta diversity, crucial for identifying
distinct ecological communities through remote sensing. Féret and de
Boissieu (2020) describe how the spectral species concept, useful for
beta diversity assessment, is operationalized through the biodivmapR R
package, effectively utilized in various research studies to analyze beta
diversity from remote sensing data (Pafumi et al., 2023; Robertson et al.,
2023). Lastly also the Rao’s Q index, largely used to assess alpha di-
versity has been used to assess beta diversity (Khare et al., 2019; Roc-
chini et al., 2019). In this context Khare et al. (2019) demonstrated that,
across various spatial resolutions and scales, the Rao’s Q index offers
superior accuracy over the conventional Shannon’s H index for esti-
mating beta diversity in complex forest settings. Adding to the
comprehensive discussion on SH’s role in beta diversity assessment,
Laliberté et al. (2020) discussed a novel approach that quantifies the
spectral composition variation among communities within a region,
emphasizing the unique contributions of each community and spectral
feature to overall beta diversity.

About gamma diversity, Laliberté et al. (2020) described a method
originally designed for partitioning the diversity in its spatial component
(Legendre and De Cáceres, 2013) adapted to allow partitioning the
spectral diversity into alpha, beta, and gamma components. They sug-
gested that high spectral beta diversity may arise from turnover in plant
species and/or functional trait composition across environmental gra-
dients such as soil properties and hydrology. On the other hand, high
spectral alpha diversity may be a result of local biotic interactions
among co-occurring plants, including phenomena like resource parti-
tioning and conspecific negative density dependence. Their approach
allows for a more nuanced understanding of the factors contributing to
spectral diversity in plant communities. Rossi et al. (2021) extended the
approach to include temporal dissimilarities between pixels. The
resulting beta spectral diversity accounts for the spectral variance
between-community over space and time and their interaction, thus
taking into account diverse phenology and farming practices among
various plant communities when estimating plant diversity.

In contrast to the variance partitioning approach of Laliberté et al.
(2020), Chao et al. (2024) propose a gamma decomposition framework
for the analysis of multifunctionality based on Hill numbers. Due to its
novelty, the sample-based approach has not yet been tested based on
remote sensing imagery. Previous research by Chao et al. (2023) on
standardized measurements and comparisons of beta diversity provides
the statistical foundation for the multifunctionality decomposition
approach.

Additionally, the SVH has been applied to assess functional diversity,
which represents the variation in functional traits among species within
a community. Functional traits are ecological characteristics that in-
fluence a species’ interactions with its environment and other species.
By measuring SH and relating it to functional traits, researchers can gain
insights into the functional diversity of plant communities. Ma et al.
(2019) demonstrated the potential of the SVH to capture functional di-
versity gradients in major European forest types, while Schneider et al.
(2017) and Helfenstein et al. (2022) use vegetation indices as proxies of
functional traits to explore its application to assess functional diversity
in a forested mountain range. Other studies take an intermediate step
and first derive biophysical traits from spectra through partial least
squares regression (Durán et al., 2019; Schweiger et al., 2018) or radi-
ative transfer model inversion (Hauser et al., 2021a; Rossi et al., 2020)
to assess functional diversity. These studies highlight the versatility of
the SVH in characterizing not only species diversity but also functional
diversity in plant communities.

Recent studies have also unveiled the versatility of SVH for appli-
cations beyond its initial scope encompassing diverse domains. In the
field of land cover change detection, SH proves instrumental in identi-
fying alterations in land cover across various scales. Notably, Tassi and
Gil (2020) utilized SH metrics from Sentinel-2 data to effectively detect
and monitor coastal land cover changes with high spatial resolution. The
sensitivity of SH metrics to changes in spectral reflectance becomes a
crucial mechanism for capturing shifts induced by alterations in land
cover. Similarly, in land cover classification, SH emerges as a catalyst for
enhancing accuracy. As illustrated by Marzialetti et al. (2020), SH
metrics derived from multispectral imagery contribute to mapping
coastal dune landscapes. The discriminative capabilities of SH metrics
become apparent in distinguishing between land cover types that exhibit
similar spectral signatures. The significant differences in spectrally
derived diversity metrics across land use also become clear in Hauser
et al. (2022) comparing between intact forest, logged forests, and
plantations in Borneo. In the context of eco-geomorphological moni-
toring, SH serves as a valuable tool for assessing the integrity of eco-
systems, such as coastal dunes. Malavasi et al. (2021) used SH metrics
from UAV imagery to monitor the eco-geomorphological integrity of
coastal dunes while Gastauer et al. (2022) assessed the environmental
quality of mining waste piles based on SH from Sentinel-2 data. In the
context of atmospheric carbon fluxes and greenhouse gas exchanges, no
direct or indirect effects on carbon content were detected by testing the
SVH in forest ecosystem (Wallis et al., 2023). On the other hand, SH
showed to serve as a tool to assess environmental heterogeneity, vali-
dating the relationship between satellite emissivity indices and eddy
covariance data across various ecosystems: in areas with large correla-
tion, SH and related environmental heterogeneity was lower, while
weaker correlations were associated with higher environmental het-
erogeneity (Torresani et al., 2022).

6. Uncertainties related to the SVH

In the preceding sections, we have explored the extensive body of
research that highlights a compelling link between SH and species di-
versity. These studies collectively underscore the potential of SH as a
valuable tool for assessing biodiversity in diverse ecosystems. However,
as we delve deeper into the complexities of this relationship, it becomes
evident that the path to fully harnessing the power of the SVH is not
without its challenges and uncertainties due to its correlative nature.
While the SVH has demonstrated promise in multiple studies, can not be
considered the ‘holy grail’ for estimating biodiversity through remote
sensing data; rather, it represents just one assumptive option among
many, that needs to be applied with caution. The complexities of the
factors that influence the SVH, potentially acting in a multivariate
manner, still necessitate a more comprehensive exploration. Studies
employing the SVH often follow diverse lines of reasoning, ranging from
indicators of geo- or habitat diversity influencing species diversity to
exploring trait and functional diversity linked to species diversity, ulti-
mately driving spectral diversity (Hauser et al., 2021b). With a few rare
exceptions (Ludwig et al., 2024) a systematic assessment of these
drivers, considering their simultaneous and potentially ambiguous ef-
fects is needed. A more thorough investigation into these aspects will
contribute to refining the theoretical underpinnings of the SVH and
provide a more robust foundation for its application in assessing biodi-
versity through remote sensing data.

The large body of research shows that adapting SH metrics and
methodologies to diverse ecological settings remains challenging,
resulting in variability of the goodness-of-fit found between studies. The
nuances and spectrally dominant features of ecosystems vary, while the
choice of data sources, spectral platforms, field-based indices, and SH
measures between studies simultaneously shape our perception of
spatial features across ecosystems, thus confounding the quest for a
universal ‘one-size-fits-all’ robust implementation of the SVH, which is
unlikely to exist given the complexity.
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It is worth noting that many of the studies showcased in the literature
demonstrate high model performance, often achieving remarkable
goodness-of-fit. As showed in Fig. 7 just few studies reported no or low
correlation between SH and biodiversity (Schmidtlein and Fassnacht,
2017; Chraibi et al., 2021; Conti et al., 2021; Lopes et al., 2017; Möckel
et al., 2016; Monteiro et al., 2022; Villoslada et al., 2020; White et al.,
2010; Ludwig et al., 2024). The apparent success of the SVH can be
attributed, in part, to the iterative nature of scientific inquiry. Re-
searchers frequently conduct multiple trials, experimenting with diverse
field indices, optical data sources featuring various resolutions, and a
range of heterogeneity metrics. The results that ultimately find their way
into publications may understandably favor those that align with the
SVH’s premise. This inherent bias in reporting positive outcomes can
potentially skew the broader understanding of the SVH’s efficacy.
Hence, it is crucial to approach SVH-related research with a discerning
eye. Recognizing the challenges and potential uncertainties that
accompany SVH investigations allows for a more balanced assessment of
its applicability and limitations.

In the following paragraphs, we will briefly outline uncertainties,
citing and referring to specific studies which delve into these issues with
greater detail and analysis.

6.1. Optical image characteristics: Spectral, spatial, temporal resolution
and atmospheric corrections

In exploring the relationship between SH and biodiversity, the op-
tical characteristics of images, including spectral, radiometric, spatial
and temporal resolution emerge as crucial. Since we explored all these
characteristics in Section 4, we do not delve deeper here to avoid
redundancy.

Atmospheric correction methods of optical images play another
crucial role in the reflectance data, affecting the robustness of biodi-
versity metrics derived from SH. Recent investigations have revealed
that the selection of atmospheric correction methods can significantly
influence the temporal consistency of reflectance data and for this
reason of SH, hindering the robustness of biodiversity metrics (Chraibi
et al., 2022). Utilizing vegetation indices like NDVI as inputs for SH
calculations offers a method to mitigate atmospheric and environmental
variations, enhancing the reliability of biodiversity assessments through
a more consistent basis for SH (Kacic and Kuenzer, 2022; Chraibi et al.,
2022). In summary, these optical image characteristics significantly
influence the application of the SVH in biodiversity monitoring. Un-
derstanding these complexities and uncertainties is critical for refining
remote sensing methodologies for biodiversity assessment, emphasizing
the necessity for ecosystem-specific approaches and the thoughtful
integration of optical data characteristics (Torresani et al., 2019; Roc-
chini, 2007; Khare et al., 2019; Wang et al., 2018a; Rossi et al., 2022;
Rocchini et al., 2017; Fassnacht et al., 2022; Gholizadeh et al., 2020;
Kacic and Kuenzer, 2022; Chraibi et al., 2022; Ludwig et al., 2024).

6.2. Spectral heterogeneity metrics

As already highlighted in section 5, the choice of SH metrics adds to
the complexity of the relationship between SH and biodiversity. As
stressed by Fassnacht et al. (2022), the indices used to assess the SH are
subject to different technical considerations that include the choice of
spectral regions and the radiometric resolution of the optical images.
Heterogeneity indices are influenced by the characteristics of the optical
images, in particular by the spectral coverage of the bands, by the
radiometric resolution and by the sun-sensor geometry. As a result, the
same metric calculated for different satellite sensors may yield different
meanings and capture different processes related to spectral variation,

which can pose issues when comparing data from different sensors.

6.3. Vegetation complexity, biomass, density and soil

Vegetation height and vertical complexity as well as the variation of
plant and leaf traits introduce uncertainties in SH-biodiversity correla-
tions (Conti et al., 2021). The alignment of remote sensing spatial res-
olution with vegetation’s physical structure impacts SH measurements.
High vertical complexity within ecosystems may result in a uniform
appearance in remote sensing data, reducing observed SH due to an
‘occlusion effect’ where taller vegetation obscures shorter plants and
creates shadowed areas (Conti et al., 2021). Furthermore, the challenge
of distinguishing species with similar spectral signatures is compounded
by intraspecific variability and shared traits, though hyperspectral sen-
sors offer improved discrimination by capturing a broader spectrum of
spectral bands. Biomass plays a crucial role in influencing SH across
landscapes (Rossi et al., 2022). Higher biomass levels within commu-
nities are associated with increased SH, although this relationship varies
with vegetation characteristics, including functional traits and
morphological features.

Also plant density, as stressed in different studies (Gillespie, 2005;
Van Cleemput et al., 2023) plays a crucial role in shaping the intricate
relationship between SH and species diversity. Higher plant density
often signifies heightened resource competition, potentially leading to
the dominance of a few species and reduced overall diversity (Connell,
1978). Additionally, it fosters intensified biotic interactions among
species, impacting their survival and diversity. In contrast, varying plant
densities within an ecosystem can create diverse microhabitats, sup-
porting a wider array of species adapted to different conditions and
thereby increasing both spectral and local species diversity. The
importance of vegetation cover in influencing SH metrics was further
highlighted by Hauser et al. (2021b), who investigated the constituents
of SH metrics derived from Sentinel-2 over a mountainous Mediterra-
nean semi-natural region, considering functional and species diversity,
variation in landscape morphology and vegetation cover fraction in
multivariate linear mixed-effect models. The study revealed that dif-
ferences in vegetation cover contributed to two-thirds of the explained
variance in the SH metrics, with species richness playing a significant
but reserved role as a predictor. This underscores the need for closer
examination of the drivers of SH, such as vegetation cover and soil
properties, to better understand the mechanisms behind its effectiveness
and robustness in different scenarios. Since the optical signal is mainly
determined by leaf and plant traits, their variation across the species in a
mixed stand drives the spectral variation in the canopy. Plant stands that
feature species with converging traits, i.e. for example a similar
pigmentation, water content or leaf area, hence show a lower spectral
diversity despite a possibly high species diversity (Ludwig et al., 2024).
This observation highlights the importance to consider ecological
knowledge on plant properties in the apllication of the SVH.

In revisiting the role of soil within the context of SH and biodiversity,
it becomes evident that soil characteristics contribute significantly to the
SH observed in remote sensing data, extending beyond a mere backdrop
to a dynamic influencer of spectral diversity (Rossi and Gholizadeh,
2023). The variability in soil reflectance, driven by factors such as
moisture and texture, complicates the straightforward application of SH
metrics by introducing an additional dimension of variability that must
be accounted for. Advanced filtering and correction techniques, such as
those outlined by Gholizadeh et al. (2018), offer pathways to mitigate
soil’s confounding effects, enhancing the reliability of SH metrics.
However, these methodologies underscore the intricate balance
required to accurately interpret spectral data, highlighting soil’s dual
role as both a challenge and an opportunity in the quest to link remote
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sensing observations with biodiversity outcomes. Such a nuanced un-
derstanding reinforces the need for comprehensive strategies that
encompass the full spectrum of environmental variables influencing
spectral diversity, ensuring a robust framework for biodiversity
assessment.

6.4. Habitat type

The type of habitat or vegetation appears to be as important, if not
more so, than the sheer number of habitats (refer to Fassnacht et al.,
(2022) for a more in-depth analysis). This becomes evident when
considering that some habitats, despite being rich in species diversity,
exhibit low spectral variation when observed through the lens of typical
satellite sensors. In such cases, the correlation between spectral varia-
tion and biodiversity becomes less straightforward (Perrone et al., 2023;
Ludwig et al., 2024). Complications arise when comparing areas with
varying numbers of habitats or with a patchy structure, challenging the
boundary between-site and within-site. The relationship between
habitat/patches count, SH, and species richness/diversity is intricate
and can confound straightforward biodiversity assessments based solely
on SH metrics.

6.5. Use of moving window approach

The choice of moving window size for calculating the SH had a sig-
nificant impact on the relationship between SH and biodiversity. Ac-
cording to different studies (Conti et al., 2021; Tagliabue et al., 2020;
Rocchini et al., 2004) there is no one-size-fits-all moving window size
and the optimal size will vary depending on the specific ecosystem and
study objectives. The selection of an appropriate moving window size
should be carefully tailored to the characteristics of the ecosystem and
the goals of the study, recognizing that it can significantly influence the
outcomes of the SH-biodiversity relationship. As an example, Schmidt-
lein and Fassnacht (2017)) stated that a moving window approach could
fail to estimate plant diversity in a heterogeneous human-dominated
landscapes due to the complex spatial structure of the environment
(with arrangement of field edges, roads, and fields) inflating the SH.
Therefore, the parcel-based approach proposed by Rossi et al. (2024)
should be preferred in agricultural landscapes. Furthermore, as high-
lighted by Laliberté et al. (2020), utilizing a moving window approach
to evaluate spectral beta-diversity calculates this diversity separately for
multiple small sub-regions, lacking an estimation of spectral beta-
diversity for the entire region as a whole.

6.6. Field data, diversity indices and sampling design

The quality and quantity of field data can also have a significant
impact on the results of biodiversity assessments based on SH. The
collection of field data should adhere to a standardized sampling design
to ensure reliability and comparability across different studies. In-
consistencies in sampling methods or biases in data collection can
introduce significant uncertainties into the analysis.

The choice of diversity indices used in the analysis is another source
of potential uncertainty. Different diversity indices, such as Simpson’s D
or species richness, offer distinct perspectives on biodiversity. Simpson’s
D, for instance, takes into account both species richness and evenness,
placing more weight on dominant species (Oldeland et al., 2010). On the
other hand, species richness solely quantifies the number of species
giving the same weight to rare species that may only marginally influ-
ence the reflected light from plant communities. Furthermore, other
facets of plant diversity such as functional and phylogenetic diversity
may display a stronger relationship with spectral diversity compared to
taxonomic diversity (Rossi and Gholizadeh, 2023; Ludwig et al., 2024),

given that phenotypic plant traits are directly associated with plant
spectra (Kothari and Schweiger, 2022; Ollinger, 2011; Woolley, 1971).
As a result, the choice of diversity indices and the dimension of plant
diversity considered can lead to varying conclusions regarding the
relationship between SH and biodiversity.

In consideration of the sampling design, often referred to as the
‘grain effect,’ it is evident that the plot size at which data is collected can
introduce uncertainties in the SVH. Matching field data specifically
designed to align with the on-ground pixel footprint of sensors presents
significant challenges (Hauser et al., 2021a; Pacheco-Labrador et al.,
2022). Despite challenges, studies conducted by Rocchini et al. (2004)
and Oldeland et al. (2010) have demonstrated that as the spatial scale of
analysis increases, a stronger correlation between SH and species rich-
ness emerges. Thus, the grain effect, as it is often referred to, becomes a
significant source of uncertainty in the context of the SVH.

7. Future perspectives

In the context of our comprehensive review, it becomes evident that
while numerous studies have highlighted the potential of SH as a proxy
for biodiversity, a multitude of factors influence these metrics. These
factors, as elaborated in section 6 of our review ‘Uncertainties related to
the SVH‘, introduce various uncertainties into the relationship between
SH and biodiversity. To advance the understanding of this relationship
and to move towards the development of a more robust methodological
framework for biodiversity monitoring from optical remote sensing
data, there is a pressing need for systematic investigations that encom-
pass all these uncertainties. We propose that future research efforts focus
on larger geographic regions that meticulously consider the inter-
connectivity of factors contributing to uncertainty in the SVH. To
facilitate a comprehensive analysis, it may be beneficial to initiate this
research with virtual data that encapsulates the entire optical spectrum,
subsequently, these experiments can be replicated using real field data.
Furthermore, considering different sensors, spectral platforms, and data
sources will contribute to a more comprehensive understanding of the
complexities inherent in the SVH and its applicability as a biodiversity
monitoring tool.

7.1. Trade-offs in the data resolutions for biodiversity estimations

Due to technical constraints, designing a sensor involves achieving a
compromise among the resolution of the three dimensions of remote
sensing data, i.e., spatial, spectral and temporal. Moreover, while our
review has acknowledged the significance of the three different di-
mensions encompassing remote sensing data when testing the SVH, the
questions remain: which dimension should be prioritized? And are there
inherent trade-offs between the resolutions in estimating plant diversity
via SH? Answering these questions remains speculative (Cawse-Nich-
olson et al., 2023); no study has comprehensively analyzed the trade-offs
among resolutions of remote sensing data for biodiversity estimation. To
the best of our knowledge, only Gamon et al. (2020) considered simul-
taneously the importance of spatial, spectral, and temporal resolution.
Themajority of the SVH studies have highlighted the relevance of spatial
resolution for establishing a robust connection between plant diversity
and the SH. At the same time, our review suggests that spectral resolu-
tion is less prominent compared to temporal and spatial dimensions.
Nevertheless, innovative SHmethodologies have emerged for estimating
local diversity using coarse satellite data, holding promise in addressing
the constraints of coarse spatial resolution of hyperspectral sensors by
capitalizing on high spectral resolution (Rossi and Gholizadeh, 2023).
Furthermore, finer spatial resolution does not systematically benefit
remote sensing applications (section 4). Consequently, a critical avenue
for future research involves investigating whether varying combinations
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of resolutions could lead to similar results. Conducting a comprehensive
study within the three-dimensional space of remote sensing data would
hold significant importance for guiding the development of future
sensors.

7.2. Spectral diversity: One piece of the puzzle

In addition to future directions in spectral diversity research, chal-
lenges stemming from space-related factors will persist (Hauser et al.,
2021b). Addressing these ongoing limitations reveals that spectral di-
versity cannot function as a standalone predictor of plant diversity.
Similarly, Cavender-Bares et al. (2022) argue that the promise of remote
sensing data capabilities should be tempered by the recognition that the
patterns of variation they reveal do not translate to processes and
mechanisms without integration of knowledge of biological, biogeo-
graphic, and anthropogenic processes across spatial and temporal scales.
Spectral diversity needs to be seen as one piece of the puzzle and using it
alone to estimate plant diversity is reductive given the broad potential of
spaceborne remote sensing (Lausch et al., 2016; Zellweger et al., 2019).
Besides products derived from optical sensors, thermal, and structural
diversity components of plant communities could also be crucial for
their diversity estimations (Deák et al., 2021; Zellweger et al., 2019).
Therefore, identifying and incorporating data products from imaging
spectroscopy and other spaceborne sensors, like Light Detection and
Ranging (LiDAR), Synthetic Aperture Radar and thermal sensors, into a
single application to estimate plant diversity accurately is an exciting
and challenging area for future research.

Particularly, the incorporation of data from LiDAR presents an
interesting possibility for further investigation. The concept of inte-
grating structural information has indeed been tested successfully.
Different studies (Torresani et al., 2020; Tamburlin et al., 2021)
explored, in various ecosystem (e.g. grassland, forest) the relationship
between structural heterogeneity, derived from the variability of LiDAR
data collected by airborne (Torresani et al., 2020) and spaceborne
sources (e.g., GEDI instrument (Torresani et al., 2023b)) as well from
photogtrammetric UAV (Torresani et al., 2024), and species diversity,
yielding positive results. This approach was subsequently termed the
‘Height Variation Hypothesis‘(HVH) stating that the higher the height
heterogeneity HH of a considered ecosystem (e.g. forest ecosystem)
derived from LiDAR data the higher the species diversity. This hypoth-
esis is supported by various ecological studies (Guo et al., 2017; Lin-
denmayer et al., 2000; Moudrỳ et al., 2023; Alvites et al., 2021; Kissling
and Shi, 2023) that state that the more complex the vertical structure of
a given ecosystem the higher the HH, which means that a higher number
of potential habitats and niches can host a greater diversity of plant
species, as well as animal species like birds. Furthermore, it is worth
noting that topographic heterogeneity, derived from LiDAR-derived
digital terrain models, can also serve as an indirect proxy to explain
biodiversity (see the work on geodiversity from Record et al. (2020) and
Cavender-Bares et al. (2020). This concept finds support in various
ecological studies (Badgley et al., 2017; Antonelli et al., 2018; Fjeldså
et al., 2012), emphasizing that complex topographic areas, such as
mountain ecosystems, create diverse habitats where animal and vege-
tation species evolve and diversify.

7.3. Beyond plant diversity

From the challenges of plant diversity estimation, another more
general question arises as to whether the SH should not be better used
for biodiversity estimation beyond plant species. Spectral diversity ex-
cels in capturing the heterogeneity of different surfaces (water, soil,
rock, non-photosynthetic vegetation, burned patches, and plant func-
tional types), making it a potential tool for biodiversity beyond plant
species. In particular, invertebrate diversity could be linked more than

plant diversity to habitat heterogeneity (Krauss et al., 2003; Kerr et al.,
2001). The otherwise confounding effect of non-vegetated areas in
remotely sensed plant diversity estimation could positively affect the
estimation of insect diversity since many are commonly found in non-
vegetated areas like ponds, bare soil, and rocks (Samways et al., 2020;
Gobbi et al., 2021). This idea is consistent with the SVH, but studies
testing the feasibility of SH to estimate insect diversity at different
spatial scales remain spare offering future research avenues.

Exploring SH beyond plant diversity unveils its potential for broader
biodiversity estimates, including invertebrate diversity which correlates
with habitat heterogeneity (Krauss et al., 2003; Kerr et al., 2001). This is
crucial as spectral diversity captures varied surfaces (water, soil, rock,
etc.), beneficial for assessing non-vegetated habitats where many in-
vertebrates thrive (Samways et al., 2020; Gobbi et al., 2021). This aligns
with the SVH and introduces ‘surrogacy’ in biodiversity estimation,
where certain biodiversity components serve as proxies for others, a
concept advanced by Magurran (2021) and further discussed in the
context of geodiversity (Record et al., 2020; Cavender-Bares et al., 2020)
offering a nuanced understanding of habitat complexity influencing
biodiversity, yet literature on SH’s applicability to insect diversity across
scales is scant, presenting ripe avenues for future research.

8. Conclusions

The recent surge of interest within the research community in the
SVH, which has developed over the last few decades, underscores its
growing reputation as a potential approach for estimating biodiversity
from various angles, particularly for quickly estimating biodiversity in
remote and challenging-to-access areas or as a first-guide for field
sampling. In this review, we highlighted the SVH characteristics studied
in the last decade: the ecosystems where the SVH has been recently
tested, the characteristics of the optical data used to test the SVH, the
heterogeneity indices used to assess the SH, the field data characteristics
and the new considered approaches. Additionally, the uncertainties,
which give rise to potential drawbacks and pitfalls, were analyzed and
should be carefully considered in the context of its application. Finally,
we examined future perspectives that call for comprehensive and sys-
tematic studies, considering the interconnected factors such as ecosys-
tems, optical data, field and heterogeneity indices, and various
approaches to address the challenges associated with the application of
the SVH.

The adoption of the SVH is closely linked to remote sensing programs
like the Copernicus program (Aschbacher, 2017) and the active partic-
ipation of esteemed space agencies such as ESA and NASA. However, it is
crucial to underscore that, despite these commendable initiatives and
various global efforts and environmental regulations aimed at biodi-
versity monitoring and protection, there is a pressing need for further
action. Increased financial support from policymakers is imperative, as
funding in this crucial area remains insufficient (Skidmore et al., 2021;
Tranquilli et al., 2012). Moreover, while open data policies are
increasingly expected for publication, especially in reputable journals,
there remains a critical shortage of accessible venues or archives for
openly publishing the extensive volumes of data associated with the
complexity of this topic (Buchanan et al., 2018; Rocchini and Neteler,
2012a). Strengthening an ‘open data source policy’ that extends beyond
data producers to include the research community is imperative.
Furthermore, fostering stronger collaboration between ecologists and
Earth observation experts is essential for advancing research in this field
(Randin et al., 2020).

Data availability
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Table

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

Aneece, IP; Epstein, H; Lerdau,
M (2017) Correlating species
and spectral diversities using
hyperspectral remote sensing
in early-successional fields

Agricultural ecosystem
(Abandoned agricultural

fields, Blandy
Experimental Farm,
Shenandoah Valley,

Clarke County Virginia,
USA)

Field,
hyperspectral data

Assess the relationship between
vegetation species diversity and
spectral diversity. Estimate how

the relationship change by
spectral region and by

intraspecific and interspecific
variabilities in pigments

Positive correlations in the
visible regions using band

depth data, positive
correlations in the near-
infrared region using first
derivatives of spectra, and
weak correlations in the red-
edge region using the two
spectral transformation

techniques

Standard deviation Shannon’s H h

Arekhi, M., Yılmaz, O. Y.,
Yılmaz, H., & Akyüz, Y. F.
(2017). Can tree species
diversity be assessed with
Landsat data in a temperate
forest?. Environmental

monitoring and assessment,
189, 1-14.

Forest ecosystem
(temperate forest in the
Gönen dam watershed

area, northeast part of the
Kazdağı Mountain,

Turkey)

Satellite, Landsat 8

To investigate the relationship
between alpha diversity of trees
and spectral variables derived

from Landsat data in a
temperate forest, along with
exploring the connection
between beta diversity and
remotely sensed data using

species composition and spectral
distance similarity

NDVI and spectral variables are
effective for assessing forest
physiological changes and

estimating plant diversity, with
potential for habitat diversity
analysis, while emphasizing the
need to consider tree species
differences in spectral patterns.

NDVI, greenness, DVI, EVI
(alpha), Jaccard coefficient

(beta)

Species richness,
Shannon’s H, Simpson’s D h

Asner, G. P. (2015). Organismic
remote sensing for tropical

forest ecology and
conservation1, 2. Annals of
the Missouri Botanical

Garden, 100(3), 127-140.

NA NA

Address the scientific challenges
associated with understanding
tropical forests, particularly in
terms of monitoring forest
cover, composition, carbon
content, and biodiversity

NA NA NA NA

Asner, G. P., & Martin, R. E.
(2009). Airborne

spectranomics: mapping
canopy chemical and
taxonomic diversity in

tropical forests. Frontiers in
Ecology and the Environment,

7(5), 269-276.

Forest ecosystem
(lowland Hawaiian
rainforests - USA)

Airborne,
hyperspectral data

To introduce the concept of
“spectranomics” and

demonstrate the link between
chemical, spectral, and

taxonomic diversity in tropical
forest canopies to facilitate more
accurate and comprehensive

biodiversity mapping.

Development of a conceptual
framework and prototype
airborne instrumentation,

termed "spectranomics," which
integrates high-resolution

imaging spectroscopy and light
detection and ranging (lidar)
technologies to map tropical
forest canopy diversity based
on chemical and spectral

signatures

NA NA NA

Asner, G. P., & Martin, R. E.
(2011). Canopy phylogenetic,

chemical and spectral
assembly in a lowland
Amazonian forest. New
Phytologist, 189(4), 999-

1012.

Forest ecosystem
(lowland tropical forest -

Peru)

Field,
hyperspectral data

To integrate phylogenetic,
chemical, and spectral
properties of canopies to
determine the degree of

phylogenetic organization of
canopy chemical traits across

soil types and assess the
quantitative linkage between
chemical constituents and

canopy spectroscopy, testing the
“spectranomics” concept.

Canopy chemistry and
spectroscopy reveal insights

into tropical forest community
assembly, with high variation
in chemical traits among taxa,
linking remote sensing to
evolutionary and ecological

processes.

Coefficient of Variation NA NA

Badourdine, C; Feret, JB;
Pelissier, R; Vincent, G (2022)
Exploring the link between
spectral variance and upper

Tropical forest (French
Guiana)

Field,
hyperspectral data

Explore the relationship
between spectral variance and
taxonomic diversity in forest

ecosystem

The correlation between total
variance and taxonomic

diversity was relatively weak,
while the interspecies variance

Spectral Variance
Species richness,
Shannon’s H and
Simpson’s D

h
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

canopy taxonomic diversity in
a tropical forest: influence of

spectral processing and
feature selection

and taxonomic diversity were
strongly correlated

Baldeck, C. A., & Asner, G. P.
(2013). Estimating vegetation
beta diversity from airborne
imaging spectroscopy and
unsupervised clustering.

Remote Sensing, 5(5), 2057-
2071.

Savannah (Kruger
National Park - South

Africa)

Airborne,
hyperspectral data

Develop a method for estimating
beta diversity evaluating
unsupervised methods for

estimating species turnover, and
comparing these with

supervised species classification
approaches

Unsupervised method based on
k-means clustering of crown

spectra can effectively estimate
beta diversity among sites

without the need for training
data

Bray-Curtis NA NA

Blanco-Sacristán, J., Panigada,
C., Tagliabue, G., Gentili, R.,
Colombo, R., Ladrón de

Guevara, M., ... & Rossini, M.
(2019). Spectral diversity
successfully estimates the

α-diversity of biocrust-
forming lichens. Remote
Sensing, 11(24), 2942.

Biocrust community,
mixture of lichens and

mosses (Aranjuez, central
Spain)

Field,
hyperspectral data

Assess alpha diversity of lichens
in biocrust community

Positive correlations between
spectral heterogeneity assessed
through specific heterogeneity
indices and species diversity
indices of lichens (Simpson

index correlate the better with
spectral heterogeneity)

Coefficient of variation,
standard deviation

Species richness,
Shannon’s H, Simpson’s D,

Pielou
h

Cavender-Bares, J., Gamon, J.
A., & Townsend, P. A. (2020).

Remote sensing of plant
biodiversity (p. 581). Springer

Nature.

NA NA NA

The book enhances
understanding of biodiversity
via remote sensing across
biology, ecology, and

geography, aiming to detect
plant diversity with different

remote sensing data. It
proposes a global biodiversity

monitoring framework,
addressing spectral detection,
technical challenges, and scale

integration.

NA NA NA

Chaurasia, A. N., Dave, M. G.,
Parmar, R. M., Bhattacharya,
B., Marpu, P. R., Singh, A., &
Krishnayya, N. S. R. (2020).
Inferring species diversity and

variability over climatic
gradient with spectral

diversity metrics. Remote
Sensing, 12(13), 2130.

Forest (India)
Airborne,

hyperspectral data
Assess alpha diversity (tree

species diversity)

Positive relationship between
spectral heterogeneity

(calculated through Convex
hull index) and tree species

diversity

Convex hull Species richness h

Chitale, V. S., Behera, M. D., &
Roy, P. S. (2019). Deciphering
plant richness using satellite
remote sensing: a study from
three biodiversity hotspots.

Biodiversity and
Conservation, 28(8), 2183-

2196.

Different habitats, mixed
wet evergreen, dry

evergreen, deciduous,
and mountain forests

(Himalaya, Indo-Burma,
Western Ghats, India)

Satellite, Landsat
TM

Assess vegetation species
richness

The variance
explained by different models
varied according to the spectral
index applied and the type of
life-form considered. Adding
physiographic indices such as
altitude, slope, and aspect
increased the variance
explained by the models

NDVI, EVI, MSAVI2, NDWI Species richness h

Chraibi, E., Arnold, H., Luque,
S., Deacon, A., Magurran, A.

Agro-forest ecosystem
(Northern Range of

Satellite, Sentinel-
2

Assess tree alpha and beta
diversity

No direct correlations between
diversity

Exponential Shannon’s H
(alpha). Bray-Curtis (beta)

Exponential Shannon’s H
(alpha). Bray-Curtis (beta)

l
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

E., & Féret, J. B. (2021). A
remote sensing approach to
understanding patterns of
secondary succession in
tropical forest. Remote
Sensing, 13(11), 2148.

Trinidad and Tobago,
West Indies)

indices based on field and RS
data. However, RS-derived

Bray-Curtis dissimilarity better
captured

the turnover in composition
with age difference between
sites, showing potential for the
identification of a gradient of
regeneration in abandoned

agroforests
Chraibi, E., de Boissieu, F.,
Barbier, N., Luque, S.,& Féret,
J. B. (2022). Stability in time
and consistency between
atmospheric corrections:
Assessing the reliability of
Sentinel-2 products for

biodiversity monitoring in
tropical forests. International
Journal of Applied Earth

Observation and
Geoinformation, 112,

102884.

Tropical forest
(Cameroon)

Satellite, Sentinel-
2

Perform a comparative
examination of atmospheric
correction methods applied to
Sentinel-2 images in the context
of monitoring tropical forests.
Evaluate the consistency of
spectral diversity metrics
computed through different

correction techniques

Spectral diversity metrics,
which are related to

biodiversity assessment, were
consistent through time for all
tested atmospheric correction

methods

Shannon’s H (alpha). Bray-
Curtis (beta)

NA NA

Conti, L., Malavasi, M., Galland,
T., Komárek, J., Lagner, O.,
Carmona, C. P., ... & Šímová,
P. (2021). The relationship
between species and spectral

diversity in grassland
communities is mediated by
their vertical complexity.

Applied Vegetation Science,
24(3).

Grassland ecoststem,
mesic meadow (South

Bohemia, Czech
Republic)

UAV, multispectral
data

Assess the relationship between
spectral and vegetation species

diversity estimating the
influence of vegetation structure

complexity

Significant but negative
correlation between spectral
heterogeneity and taxonomic
diversity. Vegetation vertical
complexity in grassland
ecosystems influences the

above-mentioned relationship

Mean Euclidean distance Shannon’s H m

Da Re, D., De Clercq, E. M.,
Tordoni, E., Madder, M.,

Rousseau, R.,& Vanwambeke,
S. O. (2019). Looking for ticks
from space: Using remotely
sensed spectral diversity to
assess Amblyomma and

Hyalomma tick abundance.
Remote Sensing, 11(7), 770.

Different habitats (Benin,
West Africa) Satellite, MODIS

Assess environmental and
species tick diversity

Positive relationships between
spectral diversity indices and
abundance of some tick species

Variance, entropy, contrast,
Rao’s Q Abundance l

Dahlin, K. M. (2016). Spectral
diversity area relationships
for assessing biodiversity in a
wildland–agriculture matrix.
Ecological applications, 26

(8), 2758-2768.

Different habitats
(mixture of agricultural
lands, forests, and lakes)

in southwestern
Michigan, USA

Airborne,
hyperspectral data

(AVIRIS)

Assess the applicability of
community assembly theory

concepts to imaging
spectroscopy, to explore spectral
diversity–area relationships and

the Functional Attribute
Representation approach in
differentiating between forest
patches and agricultural fields.

The study applies community
assembly theory to imaging
spectroscopy, distinguishing
between strongly filtered

agricultural fields and near-
random mesic forests in a

wildland–agriculture matrix.
The spectral diversity–area
relationships provide insights
into landscape-level diversity

Sum of the variance in the
first three PCs, convex hull

volume
NA NA
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

patterns, demonstrating the
method’s potential in diverse

ecosystems.
Fassnacht, F. E., Müllerová, J.,

Conti, L., Malavasi, M., &
Schmidtlein, S. (2022). About
the link between biodiversity

and spectral variation.
Applied Vegetation Science,

25(1), e12643.

NA NA

Review of several empirical
studies where the SVH has been

tested, highlighting the
uncertainties and limiting

factors of the SVH.

NA NA NA NA

Féret, J. B., & Asner, G. P.
(2014). Mapping tropical

forest canopy diversity using
high fidelity imaging

spectroscopy. Ecological
Applications, 24(6), 1289-

1296.

Tropical forest (Peruvian
Amazon)

Airborne,
hyperspectral data

Description of the spectral
species concept for the

estimation of plant alpha and
beta diversity

Alpha and beta diversity of
spectral species positively
correlated with field data in

humid tropical forests

Shannon’s H (alpha). Bray-
Curtis (beta)

Shannon’s H (alpha).
Bray-Curtis (beta) h

Féret, J. B., & de Boissieu, F.
(2020). biodivMapR: An r
package for alpha and beta
diversity mapping using
remotely sensed images.
Methods in Ecology and
Evolution, 11(1), 64-70.

Theoretical description
and a case study in
tropical forest
(Cameroon)

Satellite, Sentinel-
2

Introduction of the new R
biodivMapR package for the
assessment of alpha and beta
diversity through remote

sensing data

NA NA NA NA

Frye, H. A., Aiello-Lammens, M.
E., Euston-Brown, D., Jones,
C. S., Kilroy Mollmann, H.,

Merow, C., ... & Silander Jr, J.
A. (2021). Plant spectral
diversity as a surrogate for
species, functional and

phylogenetic diversity across
a hyper-diverse biogeographic
region. Global Ecology and
Biogeography, 30(7), 1403-

1417.

Different habitats
(Greater Cape Floristic

Region - Africa)

Field,
hyperspectral data

Assess the relationship between
vegetation diversity and spectra,
phylogenetic and functional

diversity over different biomes

The relationship between
spectral and species diversity
hold true for some distance-

based spectral diversity indices.
Furthermore it changes

between different geographic
subregions and biomes

Coefficient of variation,
average spectral angle,

average spectral
information divergence,
convex hull area, non-

abundance-weighted form
of convex hull volume,

spectral richness, spectral
distance

Shannon’s H, species
richness

h

Gastauer, M., Nascimento Jr, W.
R., Caldeira, C. F., Ramos, S.
J., Souza-Filho, P. W. M., &
Féret, J. B. (2022). Spectral
diversity allows remote

detection of the rehabilitation
status in an Amazonian iron
mining complex. International
Journal of Applied Earth

Observation and
Geoinformation, 106,

102653.

Forest (Mining waste
piles - Carajás National
Forest, Eastern Amazon,

Pará, Brazil)

Satellite, Sentinel-
2

Assess the environmental
quality of mining waste piles

based on spectral diversity from
Sentinel-2 data.

The spectral variation of
Sentinel-2 can be used to

identify environmental gains
and losses in forest mining
lands under rehabilitation

Species richness, Shannon’s
H, Simpson’s D, functional

divergence

LAI, Shannon’s H, tree
density, basal area,

phylogenetic diversity,
percentage of native trees,

soil organic matter,
functional richness,

aboveground tree biomass

h

Gholizadeh, H., Dixon, A. P.,
Pan, K. H., McMillan, N. A.,
Hamilton, R. G., Fuhlendorf,
S. D., ... & Gamon, J. A.

Grassland ecosystem
(Joseph H. Williams

Tallgrass Prairie Preserve,
Oklahoma, USA)

Airborne and
satellite (DESIS)
hyperspectral data

Assess grassland alpha diversity.
Understand how the

management practices (based
on prescribed fire) influence the

The relationship between
spectral diversity and species
diversity is affected by the

species diversity index, by time

Coefficient of variation,
convex hull volume,
spectral angle mapper.

Shannon’s H, Simpson’s D,
species richness

m for satellite
and h for
airborne
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

(2022). Using airborne and
DESIS imaging spectroscopy
to map plant diversity across
the largest contiguous tract of
tallgrass prairie on earth.

Remote Sensing of
Environment, 281, 113254.

relationship between spectral
diversity and species diversity at
different spatial resolution (due

to different vectors)

since fire occur and by spatial
scale

Gholizadeh, H., Gamon, J. A.,
Helzer, C. J., & Cavender-
Bares, J. (2020). Multi-
temporal assessment of
grassland alpha and beta

diversity using hyperspectral
imaging. Ecological

Applications, 30(7), e02145.

Grassland ecosystem
(Restored areas, central
Platte River ecosystem,
south of Wood River in
Central Nebraska, USA)

Airborne,
hyperspectral data

Assess alpha and beta diversity

High variability in the accuracy
of detecting alpha and beta

biodiversity over
time for all the tested metrics.
The use of a series (multi-
temporal) of remote sensing
observations is recommended

to more fully address
disturbance, climate variables,

and phenology

Coefficient of variation,
spectral angle mapper,

convex hull volume (alpha).
Spectral species concept
with Jaccard dissimilarity

(beta)

Species richness (alpha).
Difference between plant

communities (beta)
h

Gholizadeh, H., Gamon, J. A.,
Townsend, P. A., Zygielbaum,
A. I., Helzer, C. J., Hmimina,
G. Y., ... & Cavender-Bares, J.
(2019). Detecting prairie
biodiversity with airborne
remote sensing. Remote

Sensing of Environment, 221,
38-49.

Grassland ecosystem
(Restored areas, central
Platte River ecosystem,
south of Wood River in
Central Nebraska, USA)

Airborne,
hyperspectral data

Estimate species diversity of
vascular plants in different plots
(young and old). Assess the

effect of spatial resolution and of
flight direction in the
relationship spectral

heterogeneity and species
diversity.

Strong spectral heterogeneity
species diversity relationship in
the young plots while non-

significant one in the old plots.
The use of abundance based
species diversity indices

improve the above mentioned
relationship. The higher the
spatial resolution, the higher
the accuracy of the relationship

Coefficient of variation Species richness,
Shannon’s H

h

Gholizadeh, H., Gamon, J. A.,
Zygielbaum, A. I., Wang, R.,
Schweiger, A. K., & Cavender-
Bares, J. (2018). Remote

sensing of biodiversity: Soil
correction and data dimension
reduction methods improve
assessment of alpha diversity
(species richness) in prairie
ecosystems. Remote sensing of
environment, 206, 240-253.

Grassland ecosystem
(Prairie grassland, Cedar
Creek Ecosystem Science
Reserve, Minnesota, USA)

Field and airborne
hyperspectral data

Investigate the impact of soil
exposure on spectral diversity.
Test various heterogeneity

indices. Assessed the impact of
spatial resolution on spectral

diversity metrics.

Removing the soil-induced
effects on spectral diversity

metrics increases the
relationship between spectral
heterogeneity and species

diversity. The tested
heterogeneity metrics behave
differently depending on the
spatial resolution and on the

degree of soil exposure

Coefficient of variation,
convex hull volume,

spectral angle
mapper, spectral

information divergence,
convex hull area

Species richness h for field and
airborne

Gillespie, T. W. (2005).
Predicting woody-plant

species richness in tropical dry
forests: a case study from

south Florida, USA. Ecological
Applications, 15(1), 27-37.

Forest (Tropical dry
forest, Florida , USA)

Satellite, Landsat
ETM+

Estimate tree species diversity

At the stand level, there was a
significant positive relationship

between mean NDVI and
species richness and a

significant
negative relationship between

species richness
and standard deviation of

NDVI. Patch area, mean NDVI,
and standard deviation in NDVI
at the stand level were the best

predictors of patch
species richness

Mean, standard deviation Species richness h
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

Gould, W. (2000). Remote
sensing of vegetation, plant
species richness, and regional

biodiversity hotspots.
Ecological applications, 10

(6), 1861-1870.

Arctic ecosystem (Hood
River Region, Canada)

Satellite, Landsat
TM

Estimate vegetation species
diversity

The standard deviation of NDVI
is positively correlated with

species
richness and a weighted
abundance of mapped

vegetation types

Standard deviation,
abundance of mapped

vegetation types weighted
by relative

potential species richness

Species richness h

Hall, K., Johansson, L. J., Sykes,
M. T., Reitalu, T., Larsson, K.,
& Prentice, H. C. (2010).
Inventorying management
status and plant species
richness in semi-natural

grasslands using high spatial
resolution imagery. Applied
Vegetation Science, 13(2),

221-233.

Grassland ecosystem
(Semi natural areas,

Sweden)
Satellite, Quickbird

Estimate vascular plant species
richness and grazing intensity

Significant positive
relationships between total

within-site species richness and
different measures of spectral

heterogeneity

Standard deviation, range,
spectral richness Species richness h

Hall, K., Reitalu, T., Sykes, M. T.,
& Prentice, H. C. (2012).
Spectral heterogeneity of
QuickBird satellite data is
related to fine-scale plant
species spatial turnover in
semi-natural grasslands.

Applied Vegetation Science,
15(1), 145-157.

Grassland ecosystem
(Semi natural areas,

Sweden)
Satellite, Quickbird

Estimate fine-scale vegetation
species diversity

NDVI showed significant
associations with total

richness. While the spectral
heterogeneity of the NIR
band was found positively

correlated with
species spatial turnover

Mean distance from
centroid

Species richness, mean
within-site species
richness, species
spatial turnover

m

Hauser, L. T., Timmermans, J.,
van der Windt, N., Sil, Â. F., de
Sá, N. C., Soudzilovskaia, N.
A., & van Bodegom, P. M.

(2021). Explaining
discrepancies between
spectral and in-situ plant
diversity in multispectral
satellite earth observation.

Remote Sensing of
Environment, 265, 112684.

Different habitats
(shrublands, forested
areas, and chestnut

plantations, Montesinho
Natural Park ,Portugal)

Satellite, Sentinel-
2

Assess the relationship between
spectral (from Sentinel-2 and

from simulated spectral through
the use of different radiative
transfer models), taxonomic,
and in-situ trait diversity and

confounding factors

Spectral diversity of Sentinel-2
is dominated by variation in
vegetation cover (vegetation
traits ad soil) that, under
specific conditions (e.g.

heterogeneity index used) can
predict taxonomic diversity

Convex hull volume, Rao’s
Q

Shannon’s H m

Herkül, K., Kotta, J., Kutser, T.,
& Vahtmäe, E. (2013).
Relating remotely sensed

optical variability to marine
benthic biodiversity. PLoS

One, 8(2), e55624.

Marine environment (
Saaremaa Island, eastern

Baltic Sea, Estonia)

Airborne,
hyperspectral data

Assess diversity of benthic
macrophytes and invertebrates

Some coverage-based diversity
measures and some biomass-

based
diversity measures of benthic
macrophytes and invertebrates
showed low but statistically

significant positive correlations
with spectral heterogeneity

Mean distance from
centroid Abundances, biomasses l

Hernández-Stefanoni, J. L.,
Gallardo-Cruz, J. A., Meave, J.
A., Rocchini, D., Bello-Pineda,
J., & López-Martínez, J. O.
(2012). Modeling alpha-and
beta-diversity in a tropical
forest from remotely sensed
and spatial data. International

Forest (Tropical forest ,
Yucatan Peninsula,

Mexico)
Satellite, Landsat 7

Estimating and mapping of tree
alpha and beta diversity

Alpha and beta diversity are
related to the reflectance of the
red and near infrared bands, the

NDVI, and several texture
attributes

Three first-order, seven
second-order texture
measurements (alpha).
Bray-Curtis (beta).

Species richness (alpha).
Detrended

correspondence analysis
(beta)

h
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

journal of applied earth
observation and

geoinformation, 19, 359-368.

Heumann, B. W., Hackett, R. A.,
& Monfils, A. K. (2015).

Testing the spectral diversity
hypothesis using spectroscopy
data in a simulated wetland
community. Ecological
Informatics, 25, 29-34.

Virtual plots (simulated
wetland ecosystem)

Field,
hyperspectral data

Estimate vegetation species
diversity

Significant relationship
between spectral diversity and
alpha diversity. The predictive
models showed the best results
when diversity was calculated
through Shannon’s index.

Including flower spectra in the
models led to inconsistent

results, as both
RMSE and correlation

increased

Interquartile range divided
by the median for each

wavelength

Species richness,
Shannon’s H, Simpson’s D

m

Hoffmann, S., Schmitt, T. M.,
Chiarucci, A., Irl, S. D.,

Rocchini, D., Vetaas, O. R., ...
& Beierkuhnlein, C. (2019).
Remote sensing of β-diversity:

Evidence from plant
communities in a semi-natural
system. Applied Vegetation

Science, 22(1), 13-26.

Different habitats
(elevational gradient

from 45m to 2400 m asl,
island of La Palma,

Canary Islands, Spain)

Satellite, Sentinel-
2

Estimate vegetation beta
diversity

The variability of remote
sensing data (optical Sentinel-2
data in primis and LiDAR in a
lower extent) can be used to

assess beta diversity in
elevation between different

communities

Euclidean distance between
plots in a NMDS space

Relative abundance h

Imran, H. A., Gianelle, D.,
Scotton, M., Rocchini, D.,

Dalponte, M., Macolino, S., ...
& Vescovo, L. (2021).

Potential and limitations of
grasslands α-diversity

prediction using fine-scale
hyperspectral imagery.
Remote Sensing, 13(14),

2649.

Grassland ecosystem
(Experimental Farm,

University of Padova and
Monte Bondone site, Italy

Field,
hyperspectral data

Estimate vegetation alpha
diversity. Understand how the
spatial resolution of the optical
information influence the SVH.

The relationship between
spectral heterogeneity and

species diversity was stronger
in the study area characterized
by low number of species (best
spatial resolution was 1mm)
while it was lower in the areas
with many species (1 cm was
the best spatial resolution)

Coefficient of variation,
standard deviation

Species richness,
Shannon’s H, Simpson’s D,

evenness
m

Jackson, J., Lawson, C. S.,
Adelmant, C., Huhtala, E.,

Fernandes, P., Hodgson, R., ...
& Salguero-Gómez, R. (2022).
Short-range multispectral
imaging is an inexpensive,

fast, and accurate approach to
estimate biodiversity in a
temperate calcareous
grassland. Ecology and

Evolution, 12(12), e9623.

Grassland ecosystem (
calcareous grassland in
the Upper Seeds field site

in Wytham woods,
Oxfordshire, UK)

UAV, multispectral
data

Evaluate the utility of coarse
multispectral imaging from
UAVs in estimating plant

biodiversity at a fine spatial
resolution in a temperate
calcareous grassland

Multispectral imaging from
commercially available UAVs,
provides a cost-effective and
high-resolution method for

estimating plant biodiversity in
a temperate calcareous

grassland, showcasing positive
associations with biodiversity

indices and consistent
repeatability across sampling

days and heights.

Coefficient of variation,
standard deviation,
skewnes, kurtosis

Species richness,
Shannon’s H, Simpson’s D

NA

Jung, M. (2022). Predictability
and transferability of local
biodiversity environment
relationships. PeerJ, 10,

e13872.

Different ecosystem from
the Global Projecting
Responses of Ecological
Diversity In Changing
Terrestrial Systems
(PREDICTS) database

Satellite, MODIS

Assess the global predictability
and transferability of model-
based predictions for local
biodiversity-environment
relationships, expecting

stronger predictability than
transferability and examining
variations across biodiversity

In the relationship between
spectral heterogeneity and
biodiversity, considerable
transferability errors

emphasize the need for caution
in interpreting and applying
such relationships, with
taxonomic differences and

Mean Euclidean distance to
PCA centroid

Total Species richness,
total log-transformed
abundance, the arcsine
square root transformed
probability of interspecific
encounter as measure of
assemblage evenness, logit
transformed pairwise

l
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

measures and taxonomic
groups, utilizing data from

diverse surveys and advanced
modelling techniques.

sampling completeness
influencing prediction

accuracy.

Sørensen similarity index
as measure of difference in
assemblage composition

Kacic, P., & Kuenzer, C. (2022).
Forest Biodiversity
Monitoring Based on

Remotely Sensed Spectral
Diversity—A Review. Remote

Sensing, 14(21), 5363.

NA NA
Review of spectral diversity for
assessment of biodiversity in

forest ecosystems
NA NA NA NA

Khare, S., Latifi, H., & Ghosh, S.
K. (2018). Multi-scale

assessment of invasive plant
species diversity using

Pléiades 1A, RapidEye and
Landsat 8 data. Geocarto

international, 33(7), 681-698.

Forest (Moist deciduous
forests,Doon valley,

Himalaya, Uttarakhand,
India)

Satellite, Pléiades
1A,RapidEye and
Landsat 8 OLI

Assess vegetation species
diversity in areas affected by
invasive species (L. camara )
using spectral heterogeneity
information extracted from

optical data.

Spectral heterogeneity is a
proxy for assessing species
diversity in areas invaded by
invasive species (L. camara )
using Landsat-8 OLI, RapidEye,
and Pléiades1A data. Results
show that higher spatial

resolution improves invasive
species diversity approximation

Coefficient of variation,
Simpson’s D, Shannon’s H,

Renyi
NA NA

Khare, S., Latifi, H., & Rossi, S.
(2019). Forest beta-diversity
analysis by remote sensing:
How scale and sensors affect
the Rao’s Q index. Ecological
Indicators, 106, 105520.

Forest (Moist deciduous
forests, Doon valley,

Himalaya, Uttarakhand,
India)

Satellite, Pléiades
1A,RapidEye and
Landsat 8 OLI

Assess vegetation beta diversity
using different heterogeneity
indices and optical remote

sensing data at different spatial
resolution

Vegetation diversity was
better approximated by Rao’s Q
index than Shannon’s index in

heterogeneous forest
environments. Rao’s Q index
showed a strong scale and

spatial resolution
dependence on the spectral

information

Rao’s Q, Shannon’s H NA NA

Khare, S., Latifi, H., & Rossi, S.
(2021). A 15-year spatio-
temporal analysis of plant
beta-diversity using Landsat
time series derived Rao’s Q
index. Ecological Indicators,

121, 107105.

Forest (Moist deciduous
forests, Doon valley,

Himalaya, Uttarakhand,
India)

Satellite, Landsat 8

Assess vegetation beta diversity
using the Rao’s Q index with
two vegetation indices (MSAVI

and NDVI)

Spatiotemporal beta-diversity
was assessed using multi-

temporal Rao’s Q derived from
two vegetation indices (MSAVI
and NDVI) and environmental

factors (temperature and
precipitation)

Rao’s Q NA NA

Laliberté, E., Schweiger, A. K.,&
Legendre, P. (2020).

Partitioning plant spectral
diversity into alpha and beta
components. Ecology Letters,

23(2), 370-380.

Virtual simulated area
and Forest (Bartlett
Experimental Forest ,

USA)

Airborne,
hyperspectral data

Measure alpha, beta and gamma
diversity in virtual areas and in

forest ecosystem

introduction a novel method to
partition plant spectral gamma-
diversity (region-wide spectral
diversity) into alpha-diversity
(within community) and beta-
diversity (among community)
components. This approach,
enables the identification of
prominent spectral features.
Additionally, it allows the

assessment of individual plant
communities’ contributions to

spectral diversity

Spectral Variance (alpha,
beta and gamma)

NA NA

Levin, N., Shmida, A., Levanoni,
O., Tamari, H., & Kark, S.

(2007). Predicting mountain
plant richness and rarity from

Forest (open
mediterranean forest,
Mount Hermon, Israel,

Lebanon, Syria)

Satellite, Landsat
7, Aster, and
QuickBird

Estimate diversity, richness and
rarity of vascular vegetation

Positive significant correlation
between plant species richness
and spectral heterogeneity of
NDVI. The relative range size

Mean, standard deviation,
coefficient of variation

Species richness, relative
range

size, rarity
h
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

space using satellite-derived
vegetation indices. Diversity
and Distributions, 13(6), 692-

703.

rarity was negatively correlated
with NDVI

Liccari, F., Sigura, M., & Bacaro,
G. (2022). Use of Remote
Sensing Techniques to
Estimate Plant Diversity

within Ecological Networks: A
Worked Example. Remote
Sensing, 14(19), 4933.

Different habitats
(intensively and

extensively cultivated
areas, settlements, semi-
natural, and natural
habitats, biotopes,
wetland areas, Friuli
Venezia Giulia region,

Italy)

Satellite, Sentinel-
2

Assess vegetation alpha and beta
diversity

Effectiveness of assessing alpha
and beta diversity and

environmental heterogeneity
using the SVH in particular in

areas highly biodiverse

Species richness, Shannon’s
H, Rao’s Q (alpha).
Bray–Curtis (beta)

Ratio of alien to native
species richness,

Shannon’s H by land use
category (alpha).

Transformation-based
Redundancy Analysis
based on Hellinger
distance (beta)

h

Lopes, M., Fauvel, M., Ouin, A.,
& Girard, S. (2017). Spectro-

temporal heterogeneity
measures from dense high
spatial resolution satellite

image time series: Application
to grassland species diversity
estimation. Remote Sensing, 9

(10), 993.

Grassland ecosystem
(South West France)

Satellite, Spot 5 Assess vegetation species
diversity

Proposal of a new spectral
heterogeneity measure based

on Spectral clustering.
Low correlation between

Spectral Heterogeneity indices
and Shannon’s H maybe due to
spectral and spatial resolution

of the used images

Spectral clustering
algorithm, mean distance
from centroid, entropy

Shannon’s H l

Louail, A., Messner, F., Djellouli,
Y., & Gharzouli, R. (2022).

Remote Sensing and
Phytoecological Methods for

Mapping and Assessing
Potential Ecosystem Services
of the Ouled Hannèche Forest
in the Hodna Mountains,

Algeria. Forests, 13(8), 1159.

Forest (Ouled Hannèche,
Algeria)

Satellite, Landsat 8

Characterization and mapping
of ecosystem services through
the spectral variation and
morphological variation

The spectral variation of optical
images is considered a proxy for

topo-morphological
heterogeneity, an input

variables of a quantitative map
of the potential ecosystem

services provided by the forest

Rao’s Q , Shannon’s H NA NA

Madonsela, S., Cho, M. A.,
Ramoelo, A., & Mutanga, O.
(2017). Remote sensing of
species diversity using

Landsat 8 spectral variables.
ISPRS Journal of

Photogrammetry and Remote
Sensing, 133, 116-127.

Savannah (Mpumalanga
and Limpopo provinces of

South Africa)
Satellite, Landsat 8 Assess tree species diversity

Significant positive
relationship between
vegetation indices and
measures of tree species

diversity

Mean, standard deviation,
range, coefficient of
variation, entropy,

variance, dissimilarity

Species richness,
Shannon′s H and
Simpson’s D

m

Malavasi, M., Bazzichetto, M.,
Komárek, J., Moudrý, V.,

Rocchini, D., Bagella, S., ... &
Carranza, M. L. (2021).

Unmanned aerial systems-
based monitoring of the eco-
geomorphology of coastal

dunes through spectral Rao’s
Q. Applied Vegetation
Science, 24(1), e12567.

Coastal habitat (Coastal
dune landscape,

Tyrrhenian coast, Lazio
region, Central Italy)

UAV, multispectral
data

Monitor the eco-
geomorphological integrity of

coastal dune ecosystems

Spectral heterogeneity assessed
with Rao’s Q index can quantify
the differences in the eco/geo-
morphological heterogeneity
among different coastal areas
that have different level of
anthropogenic pressure

Rao’s Q Low and high human
pressure coastal beaches

NA

Mapfumo, R. B., Murwira, A.,
Masocha, M., & Andriani, R.
(2016). The relationship

Savanna (dry, wet and
coastal savanna

woodlands, Zimbabwe,

Satellite, Landsat 8
and Worldview 2

Assess the relationship between
spectral diversity and tree

species diversity.

The relationships between
diversity and spectral variation
of NDVI holds true in different

Coefficient of variation
Shannon’s H and
Simpson’s D h
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

between satellite-derived
indices and species diversity

across African savanna
ecosystems. International
journal of applied earth

observation and
geoinformation, 52, 306-317.

Zambia and
Mozambique)

ecosystems following a linear
and/or hump-shaped

relationship

Marzialetti, F., Cascone, S.,
Frate, L., Di Febbraro, M.,

Acosta, A. T. R., & Carranza,
M. L. (2021). Measuring

Alpha and Beta Diversity by
Field and Remote-Sensing

Data: A Challenge for Coastal
Dunes Biodiversity

Monitoring. Remote Sensing,
13(10), 1928.

Coastal habitat (Coastal
dune landscape,

Tyrrhenian coast, Lazio
region, Central Italy)

Satellite,
PlanetScope

Assess vegetation alpha and beta
diversity

Positive relationship between
alpha diversity (in particular
with species richness) and
spectral heterogeneity.
Negative significant

relationship between beta
diversity and spectral

heterogeneity (higher decay
rates obtained with Bray-Curtis

floristic dissimilarity)

Mean Distance from
centroid (alpha). Pairwise
multivariate Euclidean

distance (beta)

Species richness,
Shannon’s H, Simpson’s D
(alpha). Jaccard similarity
and Bray-Curtis (beta)

m

Marzialetti, F., Di Febbraro, M.,
Malavasi, M., Giulio, S.,

Acosta, A. T. R., & Carranza,
M. L. (2020). Mapping coastal

dune landscape through
spectral Rao’s Q temporal

diversity. Remote Sensing, 12
(14), 2315.

Coastal habitat (Coastal
dune landscape, Adriatic
coast of Molise region,

Central Italy )

Satellite, Sentinel-
2

Land cover classification based
on the within-year temporal

spectral diversity

The proposed methodology
showed effective results in the

land cover map of
heterogeneous landscape as

coastal dunes

Rao’s Q NA h

Michele, T., Duccio, R., Marc, Z.,
Ruth, S., & Giustino, T. (2018,
July). Testing the spectral

variation hypothesis by using
the RAO-Q index to estimate
forest biodiversity: Effect of
spatial resolution. In IGARSS
2018-2018 IEEE International

Geoscience and Remote
Sensing Symposium (pp.

1183-1186). IEEE.

Forest (Alpine coniferous
forest, Province of

Bolzano/Bozen, Italy)

Satellite, Sentinel-
2 and Landsat 8

Estimate the relationship
between spectral diversity and
tree species diversity. Test the
effect of spatial resolution

Spatial resolution affects the
correlation between spectral
heterogeneity and species
diversity in an alpine

coniferous forest (10m of
Sentinel-2 perform better than

30m of Landsat 8 )

Rao’s Q Shannon’s H h

Möckel, T., Dalmayne, J.,
Schmid, B. C., Prentice, H. C.,
& Hall, K. (2016). Airborne
hyperspectral data predict
fine-scale plant species
diversity in grazed dry

grasslands. Remote Sensing, 8
(2), 133.

Grassland ecosystem
(Baltic island of Öland,

Sweden)

Airborne,
hyperspectral data

Estimate vegetation species
diversity in dry, grazed

grassland ecosystems. Assess the
effect of environmental

conditions in the relationships

Species diversity was estimated
successfully by the spectral

response approach but not with
through SVH.

Mean distance from
centroid

Species richness,
Simpson’s D l

Mohapatra, J., Singh, C. P.,
Hamid, M., Khuroo, A. A.,

Malik, A. H., & Pandya, H. A.
(2019). Assessment of the

alpine plant species
biodiversity in the western

Himalaya using Resourcesat-2
imagery and field survey.

Grassland ecosystem (
alpine zone of the

Gulmarg target region,
state of Jammu and
Kashmir in India)

Satellite,
Resourcesat-2

Assess vegetation species
diversity at local and landscape

level

Spectral variation hypothesis
does not hold in the alpine
ecosystem of the Himalaya.

Species diversity in relation to
habitat heterogeneity exhibited

an elevation-dependent
pattern, with the southern

aspect of the sub-alpine zone

Simpon’s D, Shannon’s H,
Pielou’s J, Rényi’s H

Simpon’s D, Shannon’s H,
Pielou’s J, Rényi’s H m
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Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

Journal of Earth System
Science, 128, 1-16.

having the highest biodiversity.
The paper emphasized the
importance of higher spatial
resolution satellite data for

accurate field-level biodiversity
assessments.

Monteiro, A. T., Alves, P.,
Carvalho-Santos, C., Lucas, R.,
Cunha, M., Marques da Costa,

E., & Fava, F. (2021).
Monitoring Plant Diversity to
Support Agri-Environmental

Schemes: Evaluating
Statistical Models Informed by
Satellite and Local Factors in
Southern European Mountain
Pastoral Systems. Diversity,

14(1), 8.

Grassland ecosystem (
Peneda-Gerês mountain

range, Portugal)

Satellite, Sentinel-
2

Assess vegetation species
diversity in mountain grasslands

using different approaches
including the SVH

The study did not find a
relationship between spectral
heterogeneity and species

richness

Standard deviation Species richness l

Mpakairi, K. S., Dube, T.,
Dondofema, F., & Dalu, T.

(2022). Spatial
Characterisation of

Vegetation Diversity in
Groundwater-Dependent

Ecosystems Using In-Situ and
Sentinel-2 MSI Satellite Data.
Remote Sensing, 14(13),

2995.

Different habitat
(Khakea-Bray

Transboundary Aquifer,
Botswana and South

Africa)

Satellite, Sentinel-
2

Estimate vegetation species
diversity. Estimate how plant
diversity changes in relation to
the availability natural water

pans

Spectral heterogeneity
measured with the Rao’s Q
index (calculated using the
coefficient of variation of the
Sentinel-2 band) is related to
species diversity. Higher

vegetation diversity was found
along roads, fence lines, and
rivers, increasing with a
decreasing distance from

natural water pans

Rao’s Q Shannon’s H h

Mutowo, G., & Murwira, A.
(2012). Relationship between
remotely sensed variables and

tree species diversity in
savanna woodlands of

Southern Africa. International
journal of remote sensing, 33

(20), 6378-6402.

Savannah (Zimbabwe) Satellite, ASTER Assess tree species diversity

Significant relationship
between the standard deviation
of ASTER NIR and tree species
diversity (Shannon’s H and in
particular with Simpson’s D)

Standard deviation Shannon’s H, Simpson’s D h

Nagendra, H., Rocchini, D.,
Ghate, R., Sharma, B., &

Pareeth, S. (2010). Assessing
plant diversity in a dry

tropical forest: Comparing the
utility of Landsat and IKONOS

satellite images. Remote
Sensing, 2(2), 478-496.

Forest (Dry tropical
forest, central India)

Satellite, IKONOS
and Landsat ETM+

Analyse the relationship
between spectral and vegetation
species diversity. Assess the
effect of spatial resolution

Landsat ETM+ images
performs better then IKONOS
images for assessing plant
abundance and biodiversity

Mean, standard deviation,
NDVI, greenness,

brightness, wetness, IRI,
MIRI

Species richness,
Shannon’s H, abundance l

Oindo, B. O., & Skidmore, A. K.
(2002). Interannual

variability of NDVI and
species richness in Kenya.
International journal of

remote sensing, 23(2), 285-
298.

Different habitats (Kenya) Satellite, AVHRR
Assess species richness of
various vascular plants and

mammals

Spectral heterogeneity of
AVHRR NDVI (measured by
standard deviation and

coefficient of variation) is
correlated positively with

species
richness

Standard deviation,
coefficient of variation

Species richness h
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

Oldeland, J., Wesuls, D.,
Rocchini, D., Schmidt, M., &
Jürgens, N. (2010). Does

using species abundance data
improve estimates of species
diversity from remotely

sensed spectral
heterogeneity?. Ecological
Indicators, 10(2), 390-396.

Savannah (Central
Namibia)

Airborne,
hyperspectral data

Analyse the relationship
between vegetation alpha

diversity and spectral diversity

The results showed that on the
relationship between ecological
and spectral variability, tested

at different spatial scale,
abundance-based diversity

measures (such as Shannon’s H
index) performed better than
indices that accounts only to
the number of species (e.g.

species richness).

Mean distance from
centroid

Species richness,
Shannon’s H

h

Onyia, N. N., Balzter, H., &
Berrio, J. C. (2019). Spectral
diversity metrics for detecting

oil pollution effects on
biodiversity in the Niger
Delta. Remote Sensing, 11

(22), 2662.

Coastal ecosystem (plain
and freshwater ecological
zone, Delta Niger, Rivers

State, Nigeria)

Satellite, Sentinel-
2

Evaluate the validity of the SVH
against the backdrop of oil

pollution impact on biodiversity
using vascular plant species as

surrogates

Spectral diversity metrics
correlated negatively with
species data on polluted
transects and positively on

control transects proved to be
sensitive to changes in

vegetation characteristics
following oil pollution

Mean, standard deviation,
Shannon’s , Simpson’s ,
mean distance from
centroid, interquartile
range divided by the
median for each
wavelength

Species richness,
Shannon’s H, Simpson’s D,

Menhinick, Chao-1
h

Pacheco-Labrador, J.,
Migliavacca, M., Ma, X.,

Mahecha, M., Carvalhais, N.,
Weber, U., ... & Wirth, C.

(2022). Challenging the link
between functional and
spectral diversity with

radiative transfer modeling
and data. Remote Sensing of
Environment, 280, 113170.

Forests (Mediterranean
oak and pine woodland,
Spain and mountainous
mixed conifer and beech,
Romania) and virtual

communities

Satellite, Sentinel-
2 satellite and
DESIS and

Simulated data,

Evaluate at different scales, the
potential of different functional
diversity metrics within the SVH

using both synthetic and
observational datasets. Testing
of different remote sensing

information.

Functional diversity can be
determined using both

reflectance and optical traits,
but not all tested metrics were

suitable. Rao’s Q index,
functional dispersion, and
functional richness were the
most effective metrics. Spatial
resolution was found to be the

most critical limitation.
Sentinel-2 imagery,

outperformed DESIS in
estimating plant diversity,
aligning with simulation

results.

Functional richness,
evenness, diversity,
dispersion, Rao’s Q

Species richness,
Shannon’s H

l for
hyperspectral
satellite and m

for
multispectral

satellite

Pacheco-Labrador, J., de Bello,
F., Migliavacca, M., Ma, X.,
Carvalhais, N., & Wirth, C.
(2023). A generalizable

normalization for assessing
plant functional diversity
metrics across scales from
remote sensing. Methods in
Ecology and Evolution.

Virtual plots (simulated
communities of species )

Virtual
hyperspectral and
resampled to DESIS

and to
multispectral
Sentinel-2,
QuickBird-2

To improve the accuracy of
estimating Plant Functional
Diversity (PFD) from Remote

Sensing (RS) data by proposing a
generalizable normalization
approach and evaluating its

effectiveness in enhancing PFD
estimation and comparability
across different RS missions.

Proposal and validation of a
generalizable normalization
approach for Remote Sensing
data aiming to improve the
comparability of Plant

Functional Diversity estimates
between remote sensing data
and field measurements,

addressing issues related to
differences in spectral
configurations and trait

correlations across datasets.

Spectral Variance, Rao’s Q
and Functional richness NA NA

Pafumi, E., Petruzzellis, F.,
Castello, M., Altobelli, A.,

Maccherini, S., Rocchini, D.,
& Bacaro, G. (2023). Using

spectral diversity and
heterogeneity measures to
map habitat mosaics: An

Different habitats (fine
mosaic of natural and
semi-natural habitats,
with grasslands, downy
oak woodland and black
pine plantations) in the

Classical Karst, a

Satellite, Sentinel-
2

Assess an integrated approach
for mapping a diverse mosaic of

natural and semi-natural
habitats using remote sensing,
with specific objectives to
quantify the significance of

spectral heterogeneity measures

The study underscores the
effectiveness of integrating
Spectral Heterogeneity (SH)
measures, especially spectral

β-diversity, and multitemporal
frameworks for accurate
habitat mapping, offering

Rao’s Q index and alpha
and beta diversity (spectral
species) measured with

biodivMapR

NA NA
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Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

example from the Classical
Karst. Applied Vegetation
Science, 26(4), e12762.

limestone plateau in the
provinces of Trieste and

Gorizia- Italy.

for habitat classification and
establish a robust framework for
incorporating multitemporal
remotely sensed data into
habitat classification.

valuable insights into
vegetation types in complex
landscapes using remote

sensing.

Palmer, M. W., Earls, P. G.,
Hoagland, B. W., White, P. S.,
& Wohlgemuth, T. (2002).
Quantitative tools for
perfecting species lists.

Environmetrics: The official
journal of the International
Environmetrics Society, 13

(2), 121-137.

Grassland ecosystem
(Tallgrass Prairie

Preserve, Oklahoma,
USA)

Airborne,
Panchromatic

images

Assess biodiversity of vascular
plants

Positive and significant
relationship between the
spectral heterogeneity

measured through certain
heterogeneity indices at certain
spatial scale and vegetation
diversity (through three
different diversity indices)

Mean distance to the
nearest neighbour, mean
distance from spectral
centroid, leverage

Species richness, number
of infrequent species,

rarity
m

Pangtey, D., Padalia, H., Bodh,
R., Rai, I. D., & Nandy, S.

(2023). Application of remote
sensing-based spectral
variability hypothesis to
improve tree diversity

estimation of seasonal tropical
forest considering

phenological variations.
Geocarto International, 38(1),

2178525.

Forest ecosystem
(Himalayan region of
Uttarakhand, India)

Satellite, Sentinel-
2

Assess the performance of
Spectral Variation Hypothesis
(SVH) using Sentinel-2 NDVI

data in estimating tree diversity
in a seasonal tropical forest,
considering the asynchronous
phenology of different forest
types and exploring the

potential of multi-temporal
spectral variability for improved

tree diversity estimation.

Rao’s Q index, based on multi-
temporal NDVI data from

Sentinel-2, shows a significant
correlation with in-situ tree
species diversity in tropical
seasonal forests, especially
during the summer season,

demonstrating the potential of
this approach for landscape-
level tree diversity estimation
and monitoring biodiversity
changes. The study also

emphasizes the importance of
considering the phenological
variability and different forest
types when applying Rao’s Q
index for diversity assessment.

Rao’s Q index Shannon’s H h

Paz-Kagan, T., Chang, J. G.,
Shoshany, M., Sternberg, M.,

& Karnieli, A. (2021).
Assessment of plant species
distribution and diversity

along a climatic gradient from
Mediterranean woodlands to

semi-arid shrublands.
GIScience & Remote Sensing,

58(6), 929-953.

Different ecosystems
along a climatic gradient
in southeastern Israel,

encompassing a
Mediterranean climate

Airborne,
hyperspectral data

Develop a comprehensive
approach based on spectral
diversity for mapping species
diversity (SD) and richness,
investigate their relationships
with environmental and human-

derived factors, and assess
improvements in species

identification using different
spectral band combinations and

canopy texture
parameterizations

The study demonstrates the
effectiveness of spectral
diversity derived from

hyperspectral remote sensing
data in mapping and analysing
local tree and shrub species

richness, revealing its potential
for assessing biodiversity
patterns along a climatic

gradient.

Mean, variance,
homogeneity, contrast,
dissimilarity, entropy,
second moment, and

correlation

Shannon’s H h

Peng, Y., Feng, J., Sang, W., &
Axmacher, J. C. (2022).

Geographical divergence of
species richness and local
homogenization of plant

assemblages due to climate
change in grasslands.
Biodiversity and

Conservation, 1-14.

Grassland ecosystem (
from the World Database
on Protected Areas )

Satellite, Landsat
TM

Use spectral plant diversity
indices from Landsat images to
assess global vascular plant

diversity in protected grassland
areas, testing hypotheses on the
impact of future climate change
by investigating trends in plant
diversity and beta (β)-diversity.

The study predicts a decline in
plant richness in most

grasslands, excluding arid
steppes, and anticipates a
significant decrease in plant
spectral β-diversity, indicating

a trend toward biotic
homogenization under future
climate change. Different

Coefficient of variation,
MSAVI

Species richness h
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

climate variables influence
plant diversity across diverse
grassland types, emphasizing
the importance of considering
climatic factors in predicting

spectral plant diversity.

Perrone, M., Di Febbraro, M.,
Conti, L., Diví̌sek, J., Chytrý,
M., Keil, P., ... & Malavasi, M.

(2023). The relationship
between spectral and plant
diversity: Disentangling the
influence of metrics and

habitat types at the landscape
scale. Remote Sensing of

Environment, 293, 113591.

Different habitats (Czech
Republic)

Landsat 8 OLI

Investigate the applicability of
spectral diversity for monitoring

plant
diversity at the landscape scale
by comparing the performance

of three types of spectral
diversity metrics, taking into

account habitat type.

Both species richness and
functional diversity showed
positive and significant

relationships with each spectral
diversity metric tested.

However, spectral diversity
alone

accounted for a small fraction
of the deviance explained by
the models. Furthermore, the
strength of the relationship
depended significantly on

habitat type and was highest in
natural areas with transitional

bushy and
herbaceous vegetation.

Standard deviation of
NDVI, Rao’s Q index,

Spectral Species richness

Species richness,
functional diversity (mean

pairwise distance)
h

Polley, H. W., Yang, C., Wilsey,
B. J., & Fay, P. A. (2019).
Spectral heterogeneity

predicts local-scale gamma
and beta diversity of mesic
grasslands. Remote Sensing,

11(4), 458.

Grassland ecosystem
(Mesic grasslands,

Temple, central Texas,
USA)

UAV,
Hyperspectral data

Estimate vegetation beta and
gamma diversity in mesic
grasslands (having different
management) at different

spatial scales (plot and patch
scales)

Spatial heterogeneity in canopy
optical information could
explain beta and gamma

diversity.

Coefficient of variation Exponential Shannon’s H h

Rahmanian, S., Nasiri, V.,
Amindin, A., Karami, S.,

Maleki, S., Pouyan, S., & Borz,
S. A. (2023). Prediction of
Plant Diversity Using Multi-
Seasonal Remotely Sensed
and Geodiversity Data in a
Mountainous Area. Remote

Sensing, 15(2), 387.

Grassland ecosystem
(Dakal-kooh

mountainous rangeland-
Iran)

Satellite, Landsat
8, Sentinel-2

Assess the impact of temporal
dynamics on remote sensing of
plant diversity in grasslands,
using multi-temporal remotely

sensed data, geodiversity
features, and in situ
measurements.

Significant positive
relationship between the CV of
vegetation indices, diversity
indices (especially Shannon’s
and Simpson’s), and vegetation
cover across all three seasons.

Mid-spring exhibited the
highest correlation between

species diversity and the CV of
vegetation indices

Coefficient of Variation
Species richness,

Shannon’s H, Simpson’s D,
abundance

h

Robertson, K. M., Simonson, E.,
Ramirez-Bullon, N., Poulter,
B.,& Carter, R. (2023). Effects

of Spatial Resolution,
Mapping Window Size, and
Spectral Species Clustering on
Remote Sensing of Plant Beta
Diversity Using biodivMapR
and Hyperspectral Imagery.
Journal of Geophysical

Research: Biogeosciences, 128
(7), e2022JG007350.

Forest ecosystem
(longleaf pine savannah
ecosystems, southeastern

USA

Airborne,
hyperspectral data

To investigate how the capacity
to map beta diversity using
biodivMapR is influenced by
spatial resolution, mapping
window dimensions, and the
number of spectral species,

Optimal spatial resolution,
mapping window size, and
spectral species clustering

significantly affect the capacity
to map plant beta diversity,

emphasizing the importance of
fine spatial resolution for

reliable biodiversity mapping

Spectral species NA NA
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Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

Rocchini, D. (2007). Effects of
spatial and spectral resolution

in estimating ecosystem
alpha-diversity by satellite
imagery. Remote sensing of
Environment, 111(4), 423-

434.

Wetland ecosystem
(Montepulciano Lake,

Central Italy)

Satellite,
Quickbird, Aster

and Landsat ETM+

Effect of spatial resolution in
assessment of species diversity

of vascular plants

Spectral variability of high
spatial resolution information
(from Quickbird) was efficient
to assess species richness at
local scale. Coarse resolution
images (from Aster and Landsat
ETM+) showed contrasting
results. Spectral resolution

seemed to play a crucial role in
compensating for lacks in

spatial resolution.

Mean distance from
centroid Species richness h

Rocchini, D. (2009).
Algorithmic foundation of
spectral rarefaction for

measuring satellite imagery
heterogeneity at multiple

spatial scales. Sensors, 9(1),
303-310.

Theoretical description NA

Explain a new method based on
ecological theory for assessing

spectral heterogeneity at
multiple scales simultaneously

NA NA NA NA

Rocchini, D., & Neteler, M.
(2012). Spectral

rank–abundance for
measuring landscape
diversity. International

Journal of Remote Sensing, 33
(14), 4458-4470.

Theoretical description
and empirical example
over 3 Mediterranean

areas (Italy)

Satellite, Landsat
ETM+

Introduce the rank–abundance
diagrams as heterogeneity

measure (theoretical
introduction and empirical

example) for landscape diversity

The proposed metric shows to
be a powerful tools for the
assessment of landscape

diversity

Rank–abundance diagram NA NA

Rocchini, D., & Vannini, A.
(2010). What is up? Testing
spectral heterogeneity versus
NDVI relationship using
quantile regression.

International Journal of
Remote Sensing, 31(10),

2745-2756.

Different habitats
(Tuscany region, Italy)

Satellite, Landsat
ETM+

Assess the relationship between
local spectral

heterogeneity and NDVI

When the Maximum potential
spectral variability is
considered, a possible

correlation between spectral
heterogeneity and NDVI is

possible

Standard deviation NA NA

Rocchini, D., Balkenhol, N.,
Carter, G. A., Foody, G. M.,
Gillespie, T. W., He, K. S., ... &
Neteler, M. (2010). Remotely
sensed spectral heterogeneity
as a proxy of species diversity:
recent advances and open
challenges. Ecological

Informatics, 5(5), 318-329.

NA NA First review of the SVH NA NA NA NA

Rocchini, D., Chiarucci, A., &
Loiselle, S. A. (2004). Testing

the spectral variation
hypothesis by using satellite
multispectral images. Acta
Oecologica, 26(2), 117-120.

Wetland ecosystem,
(Montepulciano Lake,

central Italy)
Satellite, Quickbird

Estimation of vegetation species
diversity

Positive and significant
correlation between the

spectral heterogeneity and the
vegetation species diversity.

The correlation was influenced
by spatial extent of the studied

area

Mean distance from
centroid Species richness h

Rocchini, D., Dadalt, L.,
Delucchi, L., Neteler, M., &
Palmer, M. W. (2014).

Different habitat (the
whole North America) Satellite, MODIS

Assess vegetation alpha
diversity (species richness) and

Positive and significant
correlation between spectral
diversity and species richness,

Natural logarithm of the
spectral
richness

Species richness m
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Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

Disentangling the role of
remotely sensed spectral

heterogeneity as a proxy for
North American plant species
richness. Community Ecology,

15(1), 37-43.

the impact of the spatial extent
of the study area

however, the highest amount of
variance was explained by the
spatial extent of the sampling

units

Rocchini, D., Luque, S.,
Pettorelli, N., Bastin, L.,
Doktor, D., Faedi, N., ... &
Nagendra, H. (2018).

Measuring beta diversity by
remote sensing: A challenge
for biodiversity monitoring.
Methods in Ecology and

Evolution, 9(8), 1787-1798.

Theoretical description
and agroforestry systems

(southern Portugal)

Satellite, Sentinel-
2

Introduction to different
methods for the assessment of
beta diversity using remote

sensing data

The paper propose different
techniques to measure beta
diversity from remote sensing
optical data: a multivariate

statistical analysis, the spectral
species concept, a self-

organizing feature maps, a
multidimensional distance
matrices and through the

concept behind the SVH using
the Rao’s Q diversity index

Rao’s Q NA NA

Rocchini, D., Marcantonio, M.,
& Ricotta, C. (2017).

Measuring Rao’s Q diversity
index from remote sensing: An

open source solution.
Ecological indicators, 72, 234-

238.

Theoretical description
and different habitats
(case study over the

whole Europe)

Satellite, MODIS
Explanation of the Rao’s Q

heterogeneity index

The paper introduces the
theory and the application of
the Rao’s Q index. The spectral
heterogeneity calculated with
the new index using MODIS

images over the whole
European regions is showed.
The free available R code is

presented

Rao’s Q ,
Shannon’s H NA NA

Rocchini, D., Marcantonio, M.,
Da Re, D., Bacaro, G., Feoli, E.,
Foody, G. M., ... & Ricotta, C.
(2021). From zero to infinity:

Minimum to Maximum
diversity of the planet by
spatio-parametric Rao’s
quadratic entropy. Global

Ecology and Biogeography, 30
(5), 1153-1162.

Theoretical description
and different habitats

(case study over different
habitats in California,

USA )

Satellite, Sentinel-
2

Parameterization of the Rao’s Q
heterogeneity index

The paper shows the continuum
of potential diversity of the
Rao’s Q index, in one single
formula with a visual example

of its properties

Rao’s Q Species richness NA

Rocchini, D., Marcantonio, M.,
Da Re, D., Chirici, G., Galluzzi,
M., Lenoir, J., ... & Ziv, G.

(2019). Time-lapsing
biodiversity: An open source

method for measuring
diversity changes by remote
sensing. Remote Sensing of
Environment, 231, 111192.

Theoretical description
and different habitats

(case study over different
habitats in Italy )

Satellite, MODIS
Assessment of beta diversity
through the use of the Rao’s Q

index

The paper introduces an
innovative approach to

calculate spatio-temporal beta
diversity by using the temporal
variation of the Rao’s Q index

Rao’s Q NA NA

Rocchini, D., McGlinn, D.,
Ricotta, C., Neteler, M., &
Wohlgemuth, T. (2011).
Landscape complexity and
spatial scale influence the
relationship between

remotely sensed spectral

Different habitats (bio-
geographic regions over
the whole Switzerland)

Satellite, Landsat
ETM+

Assess the correlation between
spectral and species

accumulation at different spatial
scales. Effect of landscape

complexity.

The correlation between
spectral and species

accumulation was positive and
significant in complex

landscapes while not in simple
landscapes

Spectral rarefaction Species richness NA
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Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

diversity and survey-based
plant species richness. Journal
of Vegetation Science, 22(4),

688-698.

Rocchini, D., Ricotta, C., &
Chiarucci, A. (2007). Using
satellite imagery to assess
plant species richness: The

role of multispectral systems.
Applied Vegetation Science,

10(3), 325-331.

Wetland (Montepulciano
Lake Natural

Reserve, Tuscany- Italy)
Satellite, Quickbird

Testing the hypothesis that,
within the SVH, a limited
number of bands from a
multispectral data set,

specifically those known to be
good indicators of vegetation
biomass and growth, can be

potentially useful for accurately
estimating local species richness

through remote sensing

The main outcome of the study
suggests a "near infrared way"
to assess plant species richness
directly from remotely sensed
data, with the Quickbird
satellite demonstrating

potential for estimating species
richness, particularly due to the

near-infrared band.

Mean Euclidean distance
from

the centroid
Species richness h

Rocchini, D., Salvatori, N.,
Beierkuhnlein, C., Chiarucci,
A., de Boissieu, F., Förster, M.,
... & Féret, J. B. (2021). From
local spectral species to global

spectral communities: A
benchmark for ecosystem

diversity estimate by remote
sensing. Ecological

informatics, 61, 101195.

Theoretical description
and different habitats
(case study over the

whole Europe)

Satellite, MODIS

Application of the spectral
species concept to global

spectral communities for the
assessment of alpha and beta

diversity

The paper proposes an
innovative method to derive
alpha and beta diversity maps
over wide geographical areas
using the spectral species

concept

Shannon’s H (alpha). Bray-
Curtis (beta)

NA NA

Rocchini, D., Santos, M. J.,
Ustin, S. L., Féret, J. B., Asner,
G. P., Beierkuhnlein, C., ... &
Lenoir, J. (2022). The spectral
species concept in living color.

Journal of Geophysical
Research: Biogeosciences, 127

(9), e2022JG007026.

NA NA Review of the spectral species
concept used within the SVH

NA NA NA NA

Rocchini, D., Thouverai, E.,
Marcantonio, M., Iannacito,
M., Da Re, D., Torresani, M., ...
& Wegmann, M. (2021).
rasterdiv—An Information

Theory tailored R package for
measuring ecosystem

heterogeneity from space: To
the origin and back. Methods
in ecology and evolution, 12

(6), 1093.

Theoretical description
and different habitats
(case study over the

mountain regions of the
Province of Bolzano/

Bozen, Italy)

Satellite, Sentinel-
2

Introduction of the new
rasterdiv R package with various
heterogeneity indices and their
application for assessment of
spectral diversity and habitat

heterogeneity

Introduction of the new
rasterdiv R package with

various heterogeneity indices
and their application for

assessment of spectral diversity
and habitat heterogeneity

Berger Parker, copNDVI,
CRE, Hill, paRao, Pielou,
Rao, RaoAUC, Renyi,

Shannon’s H

NA NA

Rocchini, D., Torresani, M.,
Beierkuhnlein, C., Feoli, E.,
Foody, G. M., Lenoir, J., ... &
Ricotta, C. (2022). Double
down on remote sensing for
biodiversity estimation: a

biological mindset.
Community Ecology, 1-10.

Theoretical description
and case studies in forest
ecosystem (forest area of

Monticolo - Italy )

Theoretical
description. In the

case study
Airborne,

multispectral data

Review of the spectral species
concept within the SVH, test for
the assessment of vegetation
species diversity (alpha and

beta)

NA
Shannon’s H (alpha), Bray-

Curtis (beta) NA NA
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Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

Rocchini, D., Wohlgemuth, T.,
Ghisleni, S., & Chiarucci, A.
(2008). Spectral rarefaction:
linking ecological variability
and plant species diversity.
Community Ecology, 9(2),

169-176.

Different habitats (bio-
geographic regions over
the whole Switzerland)

Satellite, Landsat
ETM+

Assess species rarefaction by
using spectral heterogeneity

Spectral rarefaction shows to be
good proxies for species

rarefaction curves
Spectral rarefaction Species rarefaction NA

Rocchini, D., Wohlgemuth, T.,
Ricotta, C., Ghisleni, S.,

Stefanini, A., & Chiarucci, A.
(2009). Rarefaction theory
applied to satellite imagery
for relating spectral and

species diversity. Riv. Ital. di
Telerilevamento, 41, 109-123.

Different ecosystems
(Switzerland)

Landsat ETM+

To introduce a method that
concurrently assesses spectral
heterogeneity at various scales,
drawing from ecological theory,
and to demonstrate the close

association between measures of
spectral heterogeneity and

diversity derived from species
data. Casy study in Switzerland

Spectral rarefaction serves as a
potent tool for identifying

variations in biodiversity across
different regions.

Spectral rarefaction Species richness NA

Rossi, C., & Gholizadeh, H.
(2023). Uncovering the

hidden: Leveraging sub-pixel
spectral diversity to estimate
plant diversity from space.

Remote Sensing of
Environment, 296, 113734.

Grassland ecosystem
(Nature Conservancy’s
TGPP, Oklahoma, USA)

Airborne and
spaceborne,
hyperspectral

(DESIS)

Propose a novel approach for
remote estimation of plant

diversity through quantifying
spectral diversity at the sub-
pixel level and taking into
account the within-pixel

variability.

The proposed method applied
to DESIS data outperformed a
conventional spectral diversity
metric based on the coefficient

of variation.
Spaceborne imaging
spectroscopy captures

taxonomic and phylogenetic
diversity, but the choice of
diversity metric and plot size
affects the spectral-plant
diversity relationship.

Spectral species, Coefficient
of variation

Species Richness,
Shannon’s H,

Phylogenetic diversity
h

Rossi, C., Kneubühler, M.,
Schütz, M., Schaepman, M. E.,
Haller, R. M., & Risch, A. C.
(2021). Remote sensing of
spectral diversity: A new

methodological approach to
account for spatio-temporal
dissimilarities between plant
communities. Ecological
Indicators, 130, 108106.

Grassland ecosystem
(subalpine and alpine
grassland, Switzerland)

Satellite, Sentinel-
2

Measure multi-temporal
vegetation alpha, beta and

gamma diversity

Introduction to a new
methodological approach to
account for spatio-temporal
dissimilarities between plant
communities in the calculation

of spectral diversity

Spectral variance (alpha,
beta and gamma) Bray-Curtis dissimilarity m

Rossi, C., Kneubühler, M.,
Schütz, M., Schaepman, M. E.,
Haller, R. M., & Risch, A. C.
(2021). Spatial resolution,
spectral metrics and biomass
are key aspects in estimating
plant species richness from
spectral diversity in species-
rich grasslands. Remote
Sensing in Ecology and

Conservation.

Grassland ecosystem
(alpine grassland,
Switzerland)

UAV, multispectral
and airborne,

AVIRIS-NG data.
Fusion to get

hyperspectral data

Estimation of plot-level
vegetation species diversity.
Investigation of confounding

factors of the spectral
diversity–biodiversity

relationship

Success of SVH depends on
spatial resolution,

spectral metrics, and awareness
of

confounding factors (e.g. plant
biomass), which may be

ecosystem
specific

Coefficient of variation,
convex hull volume,
spectral richness

Species richness
m for UAV and l
for airborne

Rugani, B., & Rocchini, D.
(2017). Boosting the use of
spectral heterogeneity in the

Agricultural ecosystem
(vineyards in the

Province of Trento, Italy)

Satellite, Landsat
ETM+ and Landsat

8

Assess the land use impact
assessment on biodiversity in

agricultural areas

The SVH can be used to assess
the life cycle impact assessment
on biodiversity and to estimate

Interspersion NA NA
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

impact assessment of
agricultural land use on
biodiversity. Journal of

Cleaner Production, 140, 516-
524.

local or regional biodiversity
change

Sagang Takougoum, L. B.,
Ploton, P., Viennois, G., Féret,
J. B., Sonké, B., Couteron, P.,

& Barbier, N. (2022).
Monitoring vegetation

dynamics with open earth
observation tools: the case of
fire-modulated savanna to
forest transitions in Central

Africa.

Forest ecosystem ( forest
savanna in the Mpem &
Djim National Park -

Cameroon )

Landsat

Enhance understanding of
forest-savanna transitions,
evaluating the impact of fire

regimes on woody
encroachment, species

composition, and above-ground
carbon storage,

Utilizing the biodivMapR
package with Sentinel 2
imagery is possible to
characterizes vegetation

dynamics, fire regimes, and
species assemblages, providing

valuable insights into the
impact of woody encroachment

and forest progression on
biodiversity, carbon

sequestration, and the need for
active management strategies

in the region.

Spectral dissimilarity on
spectral species

NA NA

Sakowska, K., MacArthur, A.,
Gianelle, D., Dalponte, M.,
Alberti, G., Gioli, B., ... &

Vescovo, L. (2019). Assessing
across-scale optical diversity
and productivity relationships
in grasslands of the Italian
Alps. Remote Sensing, 11(6),

614.

Grassland ecosystem
(Viote del Monte
Bondone, Trentino
province - Italy)

Airborne
(hyperspectral)
and spaceborne
(Sentinel-2)

Exploring optical diversity and
productivity patterns across

different scales

Sentinel-2 spectral and spatial
resolutions are suitable for
detecting relationships

between optical diversity and
productivity in grassland
ecosystems. Good linear

correlation between optical
proxies of ecosystem

productivity and optical
diversity. There is a scale-

dependency in these
relationships at increasing pixel

sizes.

Coefficient of Variation NA NA

Schmidtlein, S., & Fassnacht, F.
E. (2017). The spectral

variability hypothesis does
not hold across landscapes.

Remote Sensing of
Environment, 192, 114-125.

Different habitats (bio-
geographic regions in
Southern Germany)

Satellite, MODIS Assess vegetation species
richness

SVH does not hold across
landscapes using MODIS
images. The correlation is

influenced by the location and
extent of the study area, by the
heterogeneity indices and by

the seasonality

Mean distance from
centroid, number of classes
of an unsupervised k-means

classification in each
mapping unit

Species richness l

Schweiger, A. K., & Laliberté, E.
(2022). Plant beta-diversity
across biomes captured by

imaging spectroscopy. Nature
Communications, 13(1), 1-7.

Different Habitats (bio-
geographic regions across

the USA)

Airborne,
hyperspectral data

Assess the relationship between
spectral heterogeneity and
vegetation alpha and beta
diversity at landscape level

The spatial heterogeneity
assessed at the spatial

resolution of 30m (same as
some upcoming satellite
missions) catch changes in
plant species composition

(beta-diversity). The
relationship between spectral
heterogeneity and alpha
diversity is influenced by
different environmental

characteristics such as pixel-to-
plant size ratio and LAI

Spectral alpha-diversity
(sum of the squared

deviations of every pixel
and spectral feature per

community from the mean
spectral feature of that

community standardized by
the number of pixels in the

community) (alpha).
Hellinger distances (beta)

Species richness,
Shannon’s H,

phylogenetic distance
(alpha). Hellinger
distances (beta)

h
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

Schweiger, A. K., Cavender-
Bares, J., Townsend, P. A.,

Hobbie, S. E., Madritch, M. D.,
Wang, R., ... & Gamon, J. A.

(2018). Plant spectral
diversity integrates functional
and phylogenetic components
of biodiversity and predicts
ecosystem function. Nature
Ecology & Evolution, 2(6),

976-982.

Grassland ecosystem
(prairie grassland, Cedar
Creek Ecosystem Science
Reserve, Minnesota, USA)

Field,
hyperspectral data

Predict ecosystem functional,
phylogenetic and taxonomic

diversity

Spectral diversity was as
predictive of ecosystem

function
as functional, phylogenetic or

taxonomic diversity

Dispersion based on three
components: the number
of units per community

(image pixels) the
regularity (evenness) and
dispersion (distance from

centroid)

Functional and
phylogenetic distances h

Shahtahmassebi, A. R., Lin, Y.,
Lin, L., Atkinson, P. M.,
Moore, N., Wang, K., ... &

Zhao, M. (2017).
Reconstructing historical land
cover type and complexity by
synergistic use of landsat
multispectral scanner and

corona. Remote Sensing, 9(7),
682.

Different ecosystem
(forest, rural urban cover,
mining and agriculture,
southern portion of Fu
Yang County, Zhejiang

Province, China)

Satellite, Landsat
MSS

Reconstruct historical land
cover types and complexity

under the SVH

Texture based indices on
specific bands and vegetation
indices were related to land

cover. Hence, spectral diversity
could be used to assess land
cover type and complexity

Image texture NA NA

Somers, B., Asner, G. P., Martin,
R. E., Anderson, C. B., Knapp,
D. E., Wright, S. J., & Van De

Kerchove, R. (2015).
Mesoscale assessment of
changes in tropical tree
species richness across a
bioclimatic gradient in
Panama using airborne
imaging spectroscopy.
Remote Sensing of

Environment, 167, 111-120.

Forest (tropical forest,
isthmus of Panama

Airborne,
hyperspectral data

Assess tree alpha and beta
diversity

Spectral heterogeneity
measured with CV showed a
significant and positive

correlation with tree species
richness. The spectral similarity
between plots shows to be a
good proxy of beta diversity.
The spectral heterogeneity was
in general higher for the moist
forest site compared to wet and

dry forests. Visible and
shortwave-infrared bands were

the driver of the spectral
variation.

Coefficient of variation
(alpha). Spectral similarity

(beta)

Species richness (alpha).
Spectral distance-decay

(beta)
h

Sun, H., Hu, J., Wang, J., Zhou,
J., Lv, L., & Nie, J. (2021).
RSPD: A Novel Remote
Sensing Index of Plant
Biodiversity Combining

Spectral Variation Hypothesis
and Productivity Hypothesis.
Remote Sensing, 13(15),

3007.

Forest (urban forests,
cities of Beijing and
Huai’an, China)

Satellite, Pléiades-
1 and Sentinel-2

Estimate vegetation species
diversity combining the SVH

with the productivity hypothesis
through the new RSPD index

The new proposed RSPD index
performed better than the CV as
heterogeneity index for the

assessment of species diversity
using Sentinel-2 and Pléiades-1

data

Coefficient of variation, a
new index called RSPD

Shannon’s H, Simpson’s D h

Taddeo, S., Dronova, I., &
Harris, K. (2019). The

potential of satellite greenness
to predict plant diversity
among wetland types,

ecoregions, and disturbance
levels. Ecological

Applications, 29(7), e01961.

Wetland ecosystems
(USA)

Satellite, Landsat 5
TM and Landsat 7

ETM+

Assess the relationships between
satellite-derived vegetation

indices/spectral heterogeneity
(spectral greenness and

heterogeneity) and plant species
richness/diversity

Positive correlations between
plant species richness/diversity
and spectral greenness and
heterogeneity, especially in

models that combines both the
information

Standard deviation

Species richness, native
species richness, family
richness, alien species
richness, Shannon’s H,

species cover

h
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

Taddeo, S., Dronova, I., &
Harris, K. (2021). Greenness,

texture, and spatial
relationships predict floristic
diversity across wetlands of
the conterminous United
States. ISPRS Journal of

Photogrammetry and Remote
Sensing, 175, 236-246.

Wetland ecosystems
(USA)

Satellite, Landsat 5
TM, Landsat 7
ETM+ and
airborne

multispectral
images

Assess the relationships between
spectral heterogeneity and plant

species richness/diversity
through a univariate and

multivariate predictive model

Singular texture metrics could
predict around 35% of richness
and diversity. The combination

with annual greenness
improved the prediction. Best
results were achieved when in
the models the spatial relations

among site were included

Dissimilarity, entropy, sum
average, sum variance,

correlation, site greenness

Species richness, native
species richness, alien

species richness,
Shannon’s H, species

cover

h for airborne
and satellite

Tagliabue, G., Panigada, C.,
Celesti, M., Cogliati, S.,

Colombo, R., Migliavacca, M.,
... & Rossini, M. (2020).
Sun–induced fluorescence

heterogeneity as a measure of
functional diversity. Remote
Sensing of Environment, 247,

111934.

Forest (temperate forest,
Alsace province, France)

Airborne,
hyperspectral data

To map the functional diversity
of terrestrial ecosystems
through assessment of

heterogeneity of vegetation
indices and induced chlorophyll

fluorescence

Good correlation between
functional diversity and the

Rao’s Q spectral heterogeneity
index based on far-red sun-

induced chlorophyll
fluorescence

Rao’s Q , coefficient of
variation

Species richness,
Shannon’s H h

Tan, X., Shan, Y., Wang, L., Yao,
Y., & Jing, Z. (2023). Density
vs. Cover: Which is the better
choice as the proxy for plant
community species diversity

estimated by spectral
indexes?. International
Journal of Applied Earth

Observation and
Geoinformation, 121,

103370.

Wetland (Sanjiang Nature
Reserve - China )

UAV, multispectral
data

To investigate the relationship
between plant species cover and
spectral-species diversity by

comparing the ability of spectral
indexes to predict various
species diversity indexes
computed based on species
density and cover across the

entire species diversity
continuum.

Spectral indexes were more
strongly correlated with species
diversity computed by species
cover than by species density,
improving the robustness of
predicting plant species

diversity based on spectral
information, and suggested Hill
numbers as a more suitable
choice for spectral-species

diversity studies across varied
community types

Standard deviation,
Coefficient variation

Hill numbers, Species
richness, Shannon’s H,

Simpson’s D
h

Tan, X., Shan, Y., Wang, X., Liu,
R., & Yao, Y. (2022).

Comparison of the predictive
ability of spectral indices for

commonly used species
diversity indices and Hill
numbers in wetlands.

Ecological Indicators, 142,
109233.

Wetland (Sanjiang Nature
Reserve - China )

UAV, multispectral
data

Assess the improved predictive
ability of species diversity by
combining the mean NDVI and
standard deviation of NDVI,
compared to using mean of

NDVI alone, and to evaluate the
suitability of Hill numbers in
spectral-species diversity
relationship research,

addressing questions about the
limitations of mean of NDVI and
exploring predictive abilities
across the entire diversity

continuum

The study highlights limitations
in using mean of NDVI alone for
predicting species diversity in
wetlands, demonstrating a

substantial improvement when
combined with the standard
deviation of NDVI. NDVI-

related indices, particularly Hill
numbers, show superior

predictive ability compared to
commonly used species

diversity indices

Standard deviation,
Coefficient variation

Species richness,
Shannon’s H, Shannon

entropy,
Gini index, Simpson’s
Reciprocal Index,
Hill numbers

h

Tassi, A., & Gil, A. (2020). A
Low-cost Sentinel-2 Data and
Rao’s Q Diversity Index-based
Application for Detecting,
Assessing and Monitoring

Coastal Land-cover/Land-use
Changes at High Spatial

Coastal habitat(Coastal
zones landscape, Terceira
Island, Azores, Portugal)

Satellite, Sentinel-
2

Detecting and monitoring
coastal land-cover/land-use

changes

The proposed remote sensing
approach efficiently detects
coastal change detection in
land cover, improving cost-
effective on-site assessments,
monitoring, and interventions

Rao’s Q NA NA
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

Resolution. Journal of Coastal
Research, 95(SI), 1315-1319.

Tassi, A., Massetti, A., & Gil, A.
(2022). The spectralrao-

monitoring Python package: A
RAO’s Q diversity index-based
application for land-cover/
land-use change detection in
multifunctional agricultural

areas. Computers and
Electronics in Agriculture,

196, 106861.

Agricultural ecosystem
("Charneca do Infantado”,
Ribatejo region, Portugal)

Satellite, Landsat 8

Introduction to the open-source
Python code of Rao s’ Q index

and use of the index for
detection and mapping of Land

Cover changes

The results showed the strength
of the Rao’s Q index (used with
a single layer - NDVI- or with
multiple Landsat 8 bands) to
detect and map land use

changes

Rao’s Q NA h

Thornley, R., Gerard, F. F.,
White, K., & Verhoef, A.
(2022). Intra-annual

taxonomic and phenological
drivers of spectral variance in
grasslands. Remote Sensing of
Environment, 271(January),

112908.

Grasslands ecosystem
(Dawcombe nature
reserve, Betchworth,

Surrey, UK)

Field,
hyperspectral data

Testing the SVH over different
phenological stages in two

grassland sites

SVH only held at the high
diversity site and only for

certain metrics
and at particular time points

Coefficient of variation
Species richness,

Simpson’s D, Simpson
evenness

h

Thouverai, E., Marcantonio, M.,
Bacaro, G., Re, D. D.,

Iannacito, M., Marchetto, E.,
... & Rocchini, D. (2021).
Measuring diversity from

space: a global view of the free
and open source rasterdiv R
package under a coding
perspective. Community
Ecology, 22(1), 1-11.

Theoretical description
and a case study over the

whole world
Satellite, PROBA-V

Explanation of different
heterogeneity indices included
in the R rasterdiv package for

assessment of habitat
heterogeneity

NA
Shannon’s H, Pielou’s ,
Berger Parker, Rao’s Q ,

CRE, Renyi, Hill.
NA NA

Torresani, M., Feilhauer, H.,
Rocchini, D., Féret, J. B.,
Zebisch, M., & Tonon, G.

(2021). Which optical traits
enable an estimation of tree
species diversity based on the

Spectral Variation
Hypothesis?. Applied

Vegetation Science, 24(2),
e12586.

Forest (alpine coniferous
forest, Province of
Bolzano/Bozen, Italy

Satellite, Sentinel-
2

Understand which optical traits
drives the SVH for the

assessment of tree species
diversity

Different optical traits (in
particular "brown pigments",
"carotenoids" and "chlorophyll
content" derived from radiative
transfer models) are the main
drivers of the correlation

between spectral heterogeneity
and species diversity in alpine

coniferous forest

Rao’s Q Shannon’s H h

Torresani, M., Masiello, G.,
Vendrame, N., Gerosa, G.,

Falocchi, M., Tomelleri, E., ...
& Zardi, D. (2022).

Correlation Analysis of
Evapotranspiration,

Emissivity Contrast and Water
Deficit Indices: A Case Study
in Four Eddy Covariance Sites

in Italy with Different
Environmental Habitats.
Land, 11(11), 1903.

Forest (Renon, Lavarone,
Bosco della Fontana,
Italy) and grassland
ecosystems (Monte
Bondone, Italy )

Satellite, MODIS

Side-goal of the study was to
assess the environmental

heterogeneity (over different
study areas where eddy

covariance tower were located)
through the SVH

The spectral variation of NDVI
MODIS images were used to
assess the environmental

heterogeneity. In the area with
high spectral heterogeneity the

correlation between eddy
covariance data and emissivity
contrast indices were lower.

Rao’s Q NA NA
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Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

Torresani, M., Rocchini, D.,
Sonnenschein, R., Zebisch, M.,
Marcantonio, M., Ricotta, C.,

& Tonon, G. (2019).
Estimating tree species

diversity from space in an
alpine conifer forest: The

Rao’s Q diversity index meets
the spectral variation
hypothesis. Ecological
Informatics, 52, 26-34.

Forest (alpine coniferous
forest, Province of
Bolzano/Bozen, Italy

Satellite, Sentinel-
2 and Landsat 8

Estimate tree species diversity
testing the Rao’s Q index using a
multitemporal approach (effect
of phenology on the spectral

heterogeneity)

The relationship between
spectral heterogeneity and

species diversity is affected by
the acquisition time (time of
the year) of the images (both
Sentinel-2 and Landsat 8).

Spatial resolution of the images
affect the results (Sentinel-2
performed better than Landsat

8)

Rao’s Q, Coefficient of
variation Shannon’s H h

Ustin, S. L., & Gamon, J. A.
(2010). Remote sensing of
plant functional types. New
Phytologist, 186(4), 795-816.

NA NA NA

The paper proposes "optical
types," a novel concept merging
plant functional types with
advanced remote sensing, to
address scale-dependence

issues in vegetation
classification, aiming for a
direct correlation between
ecological traits and remote

sensing data beyond traditional
discrete categorizations.

NA NA NA

Van Cleemput, E., Adler, P., &
Suding, K. N. (2023). Making
remote sense of biodiversity:
What grassland characteristics
make spectral diversity a good

proxy for taxonomic
diversity?. Global Ecology and
Biogeography, 32(12), 2177-

2188.

Grassland ecosystem (
included in the National
Ecological Observatory
Network - NEON- USA)

Airborne,
hyperspectral data

To investigate the influence of
three potential moderators,
namely vegetation density,

spatial distribution of species,
and invasion of non-native
species, on the relationship

between taxonomic and spectral
diversity in herbaceous

ecosystems

The feasibility of utilizing
spectral diversity as an
indicator for taxonomic

diversity in grasslands depends
on specific conditions and

should not be assumed solely
based on the SVH. A

comprehensive understanding
of the biological characteristics
of a community is essential
before considering spectral

diversity as a tool for
monitoring taxonomic

diversity.

Coefficient of Variation,
spectral angle mapper,
convex hull volume

Species richness,
Shannon’s H, inverse

Simpson’s D
h

Végh, L., & Tsuyuzaki, S.
(2021). Remote sensing of

forest diversities: the effect of
image resolution and spectral
plot extent. International

Journal of Remote Sensing, 42
(15), 5985-6002.

Forest ecosystem (Mount
Usu - Japan) Satellite, IKONOS

Validate the impact of image
resolution and varying spectral

plot extents on the SVH.
Additionally, the study seeks to
determine if incorporating herb
layer diversity improves the

precision of diversity
estimation.

low-resolution spectral
indicators derived from a
narrow extent exhibit the

highest correlations with forest
α-diversities and compositional
variances. The best spectral
indicators are obtained from
the scores of the first axis of
principal component analysis
and the near-infrared band.

Mean, standard deviation,
coefficient of variation,
mean distance from

centroid, species richness
calculated with RS data,

Shannon’s H, Simpson’s D,
Shannon’s J, true diversity

of order 1, and true
diversity of order 2

species richness,
Shannon’s H, Simpson’s D,
Shannon’s J, true diversity

of order 1, and true
diversity of order 2

m
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Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

Villoslada, M., Bergamo, T. F.,
Ward, R. D., Burnside, N. G.,
Joyce, C. B., Bunce, R. G. H.,&
Sepp, K. (2020). Fine scale
plant community assessment
in coastal meadows using

UAV based multispectral data.
Ecological Indicators, 111,

105979.

Coastal habitat (Baltic
coastal meadows, Silma
Nature Reserve, West

Estonia)

UAV, multispectral
data

Assess the relationship between
spectral heterogeneity of UAV
multispectral images and

species diversity

The relationship between
species diversity and spectral
diversity is positive until a

certain point and then it turns
negative. This it might be due
to the sensitivity of spectral
diversity to biomass or due to
artefacts produced by the high
resolution of the UAV images.

Standard deviation Shannon’s H l

Wallis, C. I., Crofts, A. L.,
Inamdar, D., Arroyo-Mora, J.
P., Kalacska, M., Laliberté, É.,

& Vellend, M. (2023).
Remotely sensed carbon
content: The role of tree
composition and tree

diversity. Remote Sensing of
Environment, 284, 113333.

Forest ecosystem (forest
sites of the Parc national
du Mont Mégantic and
Parc national du Mont-
Saint-Bruno in southern

Quebec - Canada)

Airborne,
hyperspectral

Explore how spectral
composition and spectral

diversity predict carbon content,
and disentangling the influence

of tree composition, tree
diversity, and unmeasured

canopy aspects using structural
equation modelling.

Spectral diversity is associated
with tree species diversity, no
direct or indirect effects on

carbon content were observed.
The findings emphasize the

significance of tree composition
(rather than diversity) in
mediating the relationship
between hyperspectral data
and forest carbon content

Convex hull volume Shannon’s H h

Wang, D., Qiu, P., Wan, B., Cao,
Z., & Zhang, Q. (2022).

Mapping α-and β-diversity of
mangrove forests with
multispectral and

hyperspectral images. Remote
Sensing of Environment, 275,

113021.

Forest ecosystem
(heterogeneous

mangrove forest located
in Hainan, Qinglangang
Provincial Nature Reserve

-China)

Satellite,
WorldView-2,
Sentinel-2, and
hyperspectral
Zhuhai-1

Assess and map mangrove
species diversity using the SVH,

with specific objectives to
evaluate a novel holistic

diversity method with various
satellite images, compare its
performance with benchmark
diversity methods in terms of
α-diversity, and analyse the
contributions of individual

spectral features to both α- and
β-diversities.

The study successfully applied a
novel approach using satellite
data to map plant diversity in

mangrove ecosystems,
providing insights into α- and
β-diversities, with operational

satellites (WorldView-2,
Sentinel-2, and Zhuhai-1),

contributing to potential rapid
biodiversity monitoring on a

broader scale.

Coefficient of variation,
Rao’s Q index Shannon’s H m

Wang, R., & Gamon, J. A.
(2019). Remote sensing of
terrestrial plant biodiversity.

Remote Sensing of
Environment, 231, 111218.

NA NA NA

Review on remote sensing of
biodiversity, outlining major
and emerging applications
related to biodiversity
assessment using remote
sensing, with a particular

emphasis on recent
advancements in the detection
of plant diversity through

spectral diversity.

NA NA NA

Wang, R., Gamon, J. A., &
Cavender-Bares, J. (2022).
Seasonal patterns of spectral
diversity at leaf and canopy
scales in the Cedar Creek

Grassland ecosystem
(Prairie grassland, Cedar
Creek Ecosystem Science
Reserve, Minnesota, USA)

Field,
hyperspectral data

Estimate the changes of spectral
heterogeneity at leaf and canopy
scales in grassland ecosystem.
Understand how the seasonal
changes of leaf pigments

Strong scale dependence on the
seasonal relationship between
spectral heterogeneity and

species diversity. Phenological
effects (seasonal patterns),

Coefficient of variation Shannon’s H h
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

prairie biodiversity
experiment. Remote Sensing
of Environment, 280, 113169.

influence the relationship
between spectral diversity and

species diversity.

biological, statistical and
ecological (effect of soil)
influence the spectral

heterogeneity at leaf and
canopy level in grassland

ecosystems.

Wang, R., Gamon, J. A.,
Cavender-Bares, J.,
Townsend, P. A., &

Zygielbaum, A. I. (2018). The
spatial sensitivity of the

spectral diversity–biodiversity
relationship: an experimental
test in a prairie grassland.
Ecological Applications, 28

(2), 541-556.

Grassland ecosystem
(Prairie grassland, Cedar
Creek Ecosystem Science
Reserve, Minnesota, USA)

Field and airborne,
hyperspectral data

Assess species diversity of
vascular plants testing the effect

of spatial resolution.

High-resolution imaging
spectrometer data, most

sensitive to diversity, showed
reduced detectability of

biodiversity with decreasing
spatial resolution. The optimal
pixel size for distinguishing

diversity in prairie plots was 1
mm to 10 cm, similar to an

herbaceous plant’s size. Results
reveal a scale dependence in
spectral diversity-biodiversity
relationships, emphasizing

spectral diversity’s efficacy in
detecting species richness and
evenness, but weaker detection

of phylogenetic diversity

Coefficient of variation

Species Richness,
Shannon’s H, Simpson’s D,

phylogenetic species
variation, phylogenetic

species evenness

h for field and l
for airborne

Wang, R., Gamon, J. A.,
Emmerton, C. A., Li, H.,

Nestola, E., Pastorello, G. Z.,
& Menzer, O. (2016).
Integrated analysis of

productivity and biodiversity
in a southern Alberta prairie.
Remote Sensing, 8(3), 214.

Grassland ecosystem
(Prairie grassland,

Mattheis Research Ranch,
Calgary, Alberta, Canada)

Airborne,
hyperspectral data

Assess the spatial pattern of
production and biodiversity in
grassland ecosystems and the
relationship between spectral
heterogeneity and species
richness/diversity and

productivity

Good correlation between
spectral heterogeneity and

species diversity (Shannon’s H
performed better than species

richness) as well as with
productivity (NDVI)

Coefficient of variation
Species richness,
Shannon’s H

h

Wang, R., Gamon, J. A.,
Schweiger, A. K., Cavender-
Bares, J., Townsend, P. A.,
Zygielbaum, A. I., & Kothari,
S. (2018). Influence of species

richness, evenness, and
composition on optical

diversity: A simulation study.
Remote sensing of

environment, 211, 218-228.

Grassland ecosystem
(Prairie grassland, Cedar
Creek Ecosystem Science
Reserve, Minnesota, USA)

Field,
hyperspectral data

Assess the effect of species
richness, evenness and
composition on optical

diversity. Estimate the influence
of different heterogeneity

metrics. Measure the effect of
sampling methods and soil

background on optical diversity.

Good correlation between
spectral heterogeneity and
species diversity. The

correlation is influenced by the
species diversity indices
(metrics that combined

richness and evenness are more
correlated with spectral

heterogeneity), by the sampling
method, by the vegetation traits
(collected at leaf or plot level)

and by soil background.

Coefficient of variation,
partial least squares
discriminant analysis

Species richness,
Shannon’s H, Simpson’s D,

Evenness’ s J
h

Warren, S. D., Alt, M., Olson, K.
D., Irl, S. D., Steinbauer, M. J.,
& Jentsch, A. (2014). The

Different habitats
(forests, grasslands,

plantations, Grafenwöhr
Satellite, IKONOS

Assess the relationship between
spectral heterogeneity, habitat

Good correlation between
spectral heterogeneity and

plant species richness as well as
168 indices Species richness h
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(continued )

Study reference Ecosystem/Area of study Remote sensing
data used

Goal of the study Main Outcome Heterogeneity index Field diversity index Goodness
standardized
(h=high,

m=medium,
l=low)

relationship between the
spectral diversity of satellite

imagery, habitat
heterogeneity, and plant

species richness. Ecological
Informatics, 24, 160-168.

Training Area, Bavaria,
Germany)

diversity and plant species
richness.

with habitat heterogeneity (the
latter was less strong)

White, J. C., Gómez, C., Wulder,
M. A., & Coops, N. C. (2010).
Characterizing temperate

forest structural and spectral
diversity with Hyperion EO-1

data. Remote Sensing of
Environment, 114(7), 1576-

1589.

Forest (Coastal temperate
forest, Vancouver Island,

British Columbia,
Canada)

Satellite, Hyperion
EO-1

Assess the relationship between
forest canopy structural
diversity and spectral

heterogeneity

Spectral heterogeneity is more
directly correlated to structural

diversity than to species
diversity.

26 variables representing
spectral diversity in each
stand, which included mean
and standard deviation
values for each band.

Normalized root mean
square difference based on
number of unique species

and their relative
abundance

l

Xu, C., Zeng, Y., Zheng, Z., Zhao,
D., Liu, W., Ma, Z., & Wu, B.
(2022). Assessing the Impact
of Soil on Species Diversity
Estimation Based on UAV
Imaging Spectroscopy in a
Natural Alpine Steppe.

Remote Sensing, 14(3), 671.

Grassland ecosystem
(Natural alpine grassland,
Sanjiangyuan National
Nature Reserve, Qinghai

Province, China )

UAV,
hyperspectral data

Investigate the relationship
between spectral heterogeneity
and species diversity in natural
alpine grassland. Assess the
impact of soil background.

Good correlation between
spectral heterogeneity and
species diversity. The

correlation is influenced by the
spectral heterogeneity index
used (Coefficient of variation
showed the best results) and by
the species diversity index

(Shannon’s H performed better
than species richness). The
correlation was significantly
improved after removing the

soil information.

Coefficient of variation,
convex hull volume, convex

hull area

Species richness,
Shannon’s H h

Zhang, Y., Tang, J., Wu, Q.,
Huang, S., Yao, X., & Dong, J.
(2023). Assessment of the
Capability of Landsat and
BiodivMapR to Track the

Change of Alpha Diversity in
Dryland Disturbed by Mining.
Remote Sensing, 15(6), 1554.

Different habitats in
dryland disturbed by

mining in northern China

Satellite, Landsat 5
and 8

Evaluate Landsat imagery and
the biodivMapR package for
monitoring alpha diversity

changes in drylands affected by
mining disturbance, focusing on

parameter optimization,
relationship with field-surveyed

data, impact of vegetation
community types, and detection

of variations.

The study demonstrates the
effectiveness of using Landsat
imagery and the biodivMapR
package for accurate estimation

and monitoring of alpha
diversity in drylands, with
considerations for optimal
parameters, vegetation
community types, and

identification of regions with
diversity changes

Spectral species measured
with biodivMapR

Shannon’s H h

Zhao, Y., Sun, Y., Chen, W.,
Zhao, Y., Liu, X., & Bai, Y.
(2021). The potential of
mapping grassland plant

diversity with the links among
spectral diversity, functional
trait diversity, and species

diversity. Remote Sensing, 13
(15), 3034.

Grassland ecosystem
(Semi-arid grassland

monoculture
experimental site,Xilin
River Basin, Inner

Mongolia Autonomous
Region, China).

UAV,
hyperspectral data

Assess the correlation between
species diversity, functional trait
diversity, and spectral diversity

in a semi-arid grassland
ecosystem

Species richness was positively
correlated with functional traits
and spectral heterogeneity in a
nonlinear way, tending to

saturate.

Coefficient of variation Species richness h
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Fassnacht, F.E., Müllerová, J., Conti, L., Malavasi, M., Schmidtlein, S., 2022. About the
link between biodiversity and spectral variation. Appl. Veg. Sci. 25 (1), e12643.

Feilhauer, H., Schmidtlein, S., 2011. On variable relations between vegetation patterns
and canopy reflectance. Eco. Inform. 6 (2), 83–92.

Feilhauer, H., Schmid, T., Faude, U., Sanchez-Carrillo, S., Cirujano, S., 2018. Are
remotely sensed traits suitable for ecological analysis? A case study of long-term
drought effects on leaf mass per area of wetland vegetation. Ecol. Indic. 88, 232–240.

Feilhauer, H., Zlinszky, A., Kania, A., Foody, G.M., Doktor, D., Lausch, A.,
Schmidtlein, S., 2021. Let your maps be fuzzy!—class probabilities and floristic
gradients as alternatives to crisp mapping for remote sensing of vegetation. Remote
Sens. Ecol. Conserv. 7 (2), 292–305.
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Féret, J.-B., 2022. Spectral diversity allows remote detection of the rehabilitation
status in an amazonian iron mining complex. Int. J. Appl. Earth Obs. Geoinf. 106,
102653.

Gholizadeh, H., Gamon, J.A., Zygielbaum, A.I., Wang, R., Schweiger, A.K., Cavender-
Bares, J., 2018. Remote sensing of biodiversity: soil correction and data dimension
reduction methods improve assessment of α-diversity (species richness) in prairie
ecosystems. Remote Sens. Environ. 206, 240–253.

Gholizadeh, H., Gamon, J.A., Townsend, P.A., Zygielbaum, A.I., Helzer, C.J.,
Hmimina, G.Y., Yu, R., Moore, R.M., Schweiger, A.K., Cavender-Bares, J., 2019.
Detecting prairie biodiversity with airborne remote sensing. Remote Sens. Environ.
221, 38–49.

Gholizadeh, H., Gamon, J.A., Helzer, C.J., Cavender-Bares, J., 2020. Multi-temporal
assessment of grassland α-and β-diversity using hyperspectral imaging. Ecol. Appl.
30 (7), e02145.

Gholizadeh, H., Dixon, A.P., Pan, K.H., McMillan, N.A., Hamilton, R.G., Fuhlendorf, S.D.,
Cavender-Bares, J., Gamon, J.A., 2022. Using airborne and desis imaging
spectroscopy to map plant diversity across the largest contiguous tract of tallgrass
prairie on earth. Remote Sens. Environ. 281, 113254.

Gillespie, T.W., 2005. Predicting woody-plant species richness in tropical dry forests: a
case study from South Florida, USA. Ecol. Appl. 15 (1), 27–37.

Gillespie, T.W., Foody, G.M., Rocchini, D., Giorgi, A.P., Saatchi, S., 2008. Measuring and
modelling biodiversity from space. Prog. Phys. Geogr. 32 (2), 203–221.

Gobbi, M., Armanini, M., Boscolo, T., Chirichella, R., Lencioni, V., Ornaghi, S.,
Mustoni, A., 2021. Habitat and landform types drive the distribution of carabid
beetles at high altitudes. Diversity 13 (4), 142.

Gould, W., 2000. Remote sensing of vegetation, plant species richness, and regional
biodiversity hotspots. Ecol. Appl. 10 (6), 1861–1870.

Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M.C.,
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diversity using Pléiades 1A, RapidEye and Landsat-8 data. Geocarto Int. 33 (7),
681–698.

Khare, S., Latifi, H., Rossi, S., 2019. Forest beta-diversity analysis by remote sensing: how
scale and sensors affect the Rao’s Q index. Ecol. Indic. 106, 105520.

Khare, S., Latifi, H., Rossi, S., 2021. A 15-year spatio-temporal analysis of plant
β-diversity using Landsat time series derived Rao’s Q index. Ecol. Indic. 121,
107105.

Kissling, W.D., Shi, Y., 2023. Which metrics derived from airborne laser scanning are
essential to measure the vertical profile of ecosystems? Divers. Distrib. 29 (10),
1315–1320.

Kothari, S., Schweiger, A.K., 2022. Plant spectra as integrative measures of plant
phenotypes. J. Ecol. 110 (11), 2536–2554.

M. Torresani et al. Ecological Informatics 82 (2024) 102702 

46 

http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0135
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0135
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0135
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0140
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0140
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0140
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0140
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0145
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0145
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0150
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0150
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0150
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0155
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0155
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0160
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0160
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0160
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0165
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0165
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0165
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0165
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0170
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0170
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0170
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0170
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0175
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0175
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0175
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0180
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0180
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0180
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0180
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0185
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0185
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0190
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0190
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0195
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0195
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0195
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0200
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0200
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0200
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0200
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0205
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0205
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0210
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0210
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0215
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0215
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0220
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0225
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0225
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0225
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0230
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0230
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0230
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0230
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0230
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0235
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0235
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0235
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0240
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0240
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0240
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0240
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0245
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0245
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0245
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0245
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0250
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0250
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0250
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0250
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0255
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0255
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0255
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0260
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0260
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0260
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0260
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0265
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0265
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0270
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0270
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0275
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0275
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0275
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0280
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0280
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0285
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0285
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0285
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0290
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0290
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0290
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0295
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0295
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0295
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0300
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0300
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0300
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0305
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0305
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0305
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0310
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0310
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0310
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0310
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0315
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0315
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0315
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0315
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0320
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0320
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0320
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0325
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0325
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0325
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0330
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0330
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0335
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0335
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0335
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0335
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0340
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0340
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0340
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0345
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0345
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0345
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0345
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0350
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0350
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0350
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0355
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0355
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0355
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0355
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0360
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0360
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0360
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0360
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0365
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0365
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0370
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0370
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0375
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0375
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0375
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0380
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0380
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0380
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0385
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0385
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0385
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0390
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0390
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0390
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0395
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0395
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0400
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0400
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0400
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0405
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0405
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0405
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0410
http://refhub.elsevier.com/S1574-9541(24)00244-9/rf0410


Krauss, J., Steffan-Dewenter, I., Tscharntke, T., 2003. How does landscape context
contribute to effects of habitat fragmentation on diversity and population density of
butterflies? J. Biogeogr. 30 (6), 889–900.
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Moudrỳ, V., Keil, P., Gábor, L., Lecours, V., Zarzo-Arias, A., Barták, V., Malavasi, M.,
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Which optical traits enable an estimation of tree species diversity based on the
spectral variation hypothesis? Appl. Veg. Sci. 2, e12586.

Torresani, M., Masiello, G., Vendrame, N., Gerosa, G., Falocchi, M., Tomelleri, E.,
Serio, C., Rocchini, D., Zardi, D., 2022. Correlation analysis of evapotranspiration,
emissivity contrast and water deficit indices: a case study in four eddy covariance
sites in Italy with different environmental habitats. Land 11 (11), 1903.

Torresani, M., Kleijn, D., de Vries, J.P.R., Bartholomeus, H., Chieffallo, L., Gatti, R.C.,
Moudrỳ, V., Da Re, D., Tomelleri, E., Rocchini, D., 2023a. A novel approach for
surveying flowers as a proxy for bee pollinators using drone images. Ecol. Indic. 149,
110123.

Torresani, M., Rocchini, D., Alberti, A., Moudrỳ, V., Heym, M., Thouverai, E., Kacic, P.,
Tomelleri, E., 2023b. Lidar gedi derived tree canopy height heterogeneity reveals
patterns of biodiversity in forest ecosystems. Eco. Inform. 76, 102082.

Torresani, M., Rocchini, D., Ceola, G., de Vries, J.P.R., Feilhauer, H., Moudrỳ, V.,
Bartholomeus, H., Perrone, M., Anderle, M., Gamper, H.A., et al., 2024. Grassland
vertical height heterogeneity predicts flower and bee diversity: an uav
photogrammetric approach. Sci. Rep. 14 (1), 809.

Tranquilli, S., Abedi-Lartey, M., Amsini, F., Arranz, L., Asamoah, A., Babafemi, O.,
Barakabuye, N., Campbell, G., Chancellor, R., Davenport, T.R., et al., 2012. Lack of
conservation effort rapidly increases African great ape extinction risk. Conserv. Lett.
5 (1), 48–55.

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., Steininger, M., 2003.
Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18 (6),
306–314.

Ustin, S.L., Gamon, J.A., 2010. Remote sensing of plant functional types. New Phytol.
186 (4), 795–816.

Van Cleemput, E., Adler, P., Suding, K.N., 2023. Making remote sense of biodiversity:
what grassland characteristics make spectral diversity a good proxy for taxonomic
diversity? Glob. Ecol. Biogeogr. 32 (12), 2177–2188.

Van Jaarsveld, A.S., Freitag, S., Chown, S.L., Muller, C., Koch, S., Hull, H., Bellamy, C.,
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