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A B S T R A C T   

The “Height Variation Hypothesis” is an indirect approach used to estimate forest biodiversity through remote 
sensing data, stating that greater tree height heterogeneity (HH) measured by CHM LiDAR data indicates higher 
forest structure complexity and tree species diversity. This approach has traditionally been analyzed using only 
airborne LiDAR data, which limits its application to the availability of the dedicated flight campaigns. In this 
study we analyzed the relationship between tree species diversity and HH, calculated with four different het
erogeneity indices using two freely available CHMs derived from the new space-borne GEDI LiDAR data. The 
first, with a spatial resolution of 30 m, was produced through a regression tree machine learning algorithm 
integrating GEDI LiDAR data and Landsat optical information. The second, with a spatial resolution of 10 m, was 
created using Sentinel-2 images and a deep learning convolutional neural network. We tested this approach 
separately in 30 forest plots situated in the northern Italian Alps, in 100 plots in the forested area of Traunstein 
(Germany) and successively in all the 130 plots through a cross-validation analysis. Forest density information 
was also included as influencing factor in a multiple regression analysis. Our results show that the GEDI CHMs 
can be used to assess biodiversity patterns in forest ecosystems through the estimation of the HH that is 
correlated to the tree species diversity. However, the results also indicate that this method is influenced by 
different factors including the GEDI CHMs dataset of choice and their related spatial resolution, the heteroge
neity indices used to calculate the HH and the forest density. Our finding suggest that GEDI LIDAR data can be a 
valuable tool in the estimation of forest tree heterogeneity and related tree species diversity in forest ecosystems, 
which can aid in global biodiversity estimation.   

1. Introduction 

Forests are the dominant terrestrial biome on Earth, holding most of 
the world’s terrestrial species (Arroyo-Rodríguez et al., 2020; Pan et al., 
2013; Hansen et al., 2013; Primack et al., 2006). Most of the crucial 
benefits and services derived from forests including water cycle and 
pollution control, soil protection and carbon stock depend on the overall 
biodiversity condition of this ecosystem (Acharya et al., 2019). In the 
last 8000 years, almost 50% of the global original forest cover and the 
related services was lost mainly as a result of human activities; this 
number is likely to increase given current global deforestation rates of 

around 1% per year (Mittermeier et al., 1998; de Lima et al., 2020). The 
forest loss, the high ecosystem fragmentation together with reduction in 
habitat connectivity are therefore considered the major drivers of global 
biodiversity decline (Arroyo-Rodríguez et al., 2020; Betts et al., 2017). It 
is therefore important to monitor the biological diversity of forest eco
systems in order to prevent further decline and to implement significant 
conservation and restoration practices. Different working groups, 
agreements and actions as the Sustainable Development Goals (SDGs) 
promoted by the United Nations together with the Intergovernmental 
Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) 
or the Convention on Biological Diversity (CBD) are born in the last 
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decades to contrast the losses of biodiversity worldwide (Skidmore et al., 
2021). Other groups such as the Group on Earth observations Biodi
versity Observation network (GEO BON) promote a common framework 
of essential biodiversity variables (EBVs) for the monitoring of biodi
versity worldwide, integrating primary observations from in situ mea
surements with remote sensing data. The use of the latter data is 
nowadays crucial for estimating global biodiversity (Rocchini et al., 
2022; Michele et al., 2018) since Earth observation represents a key tool 
for monitoring different habitats worldwide and their biological di
versity. It became rapid and affordable to acquire large environmental 
information at multiple temporal and spatial scales mainly due to the 
fast progresses in the development of new and accurate sensors (having 
higher spatial and spectral resolution) and vectors (that can cover vast 
areas with higher revisit frequency) (Hakkenberg et al., 2018). Different 
remote sensing data, approaches and methodologies have been devel
oped in the last years to estimate various aspects of biodiversity (White 
et al., 2010). Recent approaches aim to analyse an indirect relationship 
between the environmental heterogeneity, measured as the variation of 
the remotely sensed data and field-based biodiversity, as reviewed in 
Kacic and Kuenzer (2022). The Spectral Variation Hypothesis (SVH), 
proposed by Palmer et al. (2002) represents a perfect example. This 
concept, discussed and analyzed in different studies (Rocchini et al., 
2004; Rocchini et al., 2022; Tagliabue et al., 2020; Rocchini et al., 2021; 
Torresani et al., 2021; Marzialetti et al., 2020; Sun et al., 2021; Gholi
zadeh et al., 2018), hypothesizes that areas with high variability of 
spectral information are characterized by a higher environmental het
erogeneity, higher number of niches where more species can survive 
(Rocchini et al., 2022). Different studies showed that this approach 
holds true in a range of ecosystems and it is influenced by a series of 
factors, including the spatial resolution of the optical data (Michele 
et al., 2018; Rocchini, 2007), the heterogeneity indices used to estimate 
the variability of the optical data (e.g. the Rao’s Q index, the Coefficient 
of Variation, the Convex hull index) (Gholizadeh et al., 2018), the sea
sonality (Torresani et al., 2019) and the indices used to assess the field 
species diversity (e.g. Shannon’s H, species richness) (Oldeland et al., 
2010). 

Recent studies (Torresani et al., 2020; Tamburlin et al., 2021) have 
proposed to test the theory behind the SVH using LiDAR data in order to 
understand whether the heterogeneity of LiDAR information, used in 
particular to assess the Height Heterogeneity (HH) in forest ecosystems, 
can be used as a proxy of trees species diversity. This approach (called 
“Height Variation Hypothesis” -HVH) states that, the higher the forest 
vertical structure complexity, and hence the higher number of sub- 
habitats and niches that can be found in the forest and the higher the 
diversity of growing trees (Torresani et al., 2020; Moudry ̀ et al., 2023; 
Moudry ̀ et al., 2021). As for the SVH, this approach is influenced by 
different factors such as the spatial resolution of LiDAR data, the canopy 
cover and density of the forest, the heterogeneity indices and the LiDAR 
metrics used to assess the HH. To date, the relationship between HH and 
tree species diversity has been tested using only airborne LiDAR data (in 
particular using the Canopy Height Models - CHM - that according to 
different studies (Torresani et al., 2020; Tamburlin et al., 2021) is the 
most appropriate for this purpose), which makes its application limited 
to the availability of the dedicated flight campaigns. 

In December 2018, the Global Ecosystem Dynamics Investigation 
(GEDI), a spaceborne LiDAR sensor from NASA onboard the Interna
tional Space Station (ISS) was launched in order to produce high reso
lution 3D observations of the Earth’s forests (Dubayah et al., 2020; 
Potapov et al., 2021). GEDI data are collected from a full waveform 
LiDAR sensor (with 25 m diameter footprints) (Roy et al., 2021), and can 
be used as valuable estimates of forest structure, its heterogeneity and 
related biodiversity. The novel data-sets of GEDI have been used to cover 
information about forest canopy height (Gupta and Sharma, 2022; 
Marselis et al., 2022), growth dynamics (Guerra-Hernández and Pascual, 
2021), vertical foliage complexity (Kacic et al., 2021), above-ground 
biomass (Duncanson et al., 2020; Saarela et al., 2022; Dubayah et al., 

2022), biomass density (Duncanson et al., 2022), forest fuels classifi
cation (Hoffrén et al., 2023) and surface elevation (Quirós et al., 2021) 
which are key components for a global monitoring of forest ecosystems. 
Limitations at local scale arise because of the generalized footprint and 
the sparse sampling design (Liu et al., 2022). To extrapolate GEDI 
samples for continuous information on vegetation structure, multiple 
approaches have been developed fusing GEDI samples with passive 
optical images in machine learning models (Liu et al., 2022; Rishmawi 
et al., 2021; Kacic et al., 2021). At global scale, Potapov et al. (2021) 
made use of machine learning algorithms to compute and derive a global 
forest canopy height map (hereafter “Potapov30m”) at 30 m spatial 
resolution fusing GEDI and phenology metrics based on Landsat 8 OLI 
imagery. More recently Lang et al. (2022), Lang et al. (2022), produced a 
high-resolution CHM of the Earth (hereafter “Lang10m”) at 10 m reso
lution using Sentinel-2 optical images and a deep learning approach 
(convolutional neural networks). 

The aim of this study (Fig. 1) is to understand if the recently pub
lished and freely available LiDAR GEDI CHMs Lang10m and Pota
pov30m can be used to assess biodiversity patterns in forest ecosystems. 
In particular, (1) we evaluated the accuracy of both the global GEDI 
CHMs using ALS CHMs, (2) we assessed the relationship between in situ 
tree species diversity (using Shannon’s H index and species richness) 
and HH calculated using the GEDI CHMs through four heterogeneity 
indices (Rao’s Q, CV, Shannon’s H and Simpson’s D index); (3) we tested 
the effect of forest density (through the canopy cover and the number of 
trees) on this relationship; and (4) we proposed a visual spatialization of 
the best outcomes to better understand the proposed approach and the 
results. We tested this separately in 30 forest plots situated in the 
northern Italian Alps, in 100 plots in the forested area of Traunstein 
(Germany) and successively in all the 130 plots through a cross- 
validation analysis. 

2. Material and methods 

2.1. Study areas 

Our approach was tested in two separate forest areas, one in Italy and 
one in Germany. In Italy, the approach was tested in 30 plots (with a size 
of 1 ha, 100 m x 100 m), randomly chosen in 2 separate forests in the 
Province of Bolzano/Bozen (Italy) (Fig. 2). 20 plots are located on the 
Salten/Salten plateau (1100 m a.s.l.), in a topographically homogeneous 
coniferous forest area above the municipality of San Genesio/Jenesien. 
Between June and August 2017, an exhaustive field data collection was 
performed where all the trees with a diameter at breast height (DBH) 
greater then 5 cm were measured and classified by species. Pinus syl
vestris, followed by Larix decidua and Picea abies were the dominating 
species (95%). 5% were deciduous trees such as Betula alba, Corylus 
avellana, Salix caprea and Sorbus aucuparia. See Torresani et al. (2021) 
for further information about the area. 10 other plots have been 
randomly selected within a temperate forest at 490 m a.s.l. near the 
Monticolo/Montiggl lake in a topographically homogeneous area in the 
municipality of Appiano sulla Strada del Vino/Eppan an der Weinstraße. 
Also in this area, a field campaign conducted in Spring 2019 was carried 
out in order to classify species of all trees with a DBH of at least 5 cm. 
51% of the measured trees were conifers, with Pinus sylvestris as domi
nant species, followed by Larix decidua and Picea abies. The remaining 
49% were broad-leaves with Castanea sativa and Quercus pubescens as 
dominant species followed by Populus tremula and Betula alba. To obtain 
the exact position of each of the 30 plots, their centers and corners were 
geo-referenced with a GPS device (spatial accuracy ±3 m). To simplify, 
henceforth we will use “Italian study area” to refer to all 30 plots. 

The German study area is located in the forested area of Traunstein 
(Fig. 3) located in the municipality of Traunstein (Germany). The area 
(N47◦52’ E12◦38’) is topographically homogeneous and it has a size of 
25 ha; it is included in the ForestGEO network (https://forestgeo.si. 
edu/) created and censused in 2015. Within the forest, all the trees 
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with a DBH ⩾5cm were geo-located and classified by species. 52% of 
trees were conifers (Picea abies in primis) followed by 48% of broadleaves 
dominated by Acer pseudoplatanus. Within the area, 100 plots of 1 ha of 
size (100 m x 100 m) were randomly chosen. As explained in a previous 
study (Torresani et al., 2020) due to their size, some plots might have a 
partially shared/overlapped area. Since the analysis is a “per plot-based 
analysis” the overlapping should not create statistical issues (Torresani 
et al., 2020). 

2.2. In-situ species diversity 

The in situ tree species diversity was calculated for each plot of both 
study sites, using 2 different indices: species richness and Shannon’s H. 
Species richness represents the number of different species found in each 
plot. Shannon’s H (formula 1) is one of the most famous index used in 
ecology for assessing alpha diversity, it is based on the abundance of 
each species in a certain area reflecting the evenness of the population 
(Shannon, 1948). 

H = −
∑q

i=1
pi*log

(
pi
)

(1)  

where: 

H = Shannon’s H index 
q = number of actual species 
pi = ratio between the number of individuals for a defined species i 
and the total number of individuals within each plot. 

2.3. LiDAR data 

2.3.1. GEDI LiDAR data 
We estimated the HH using the recently published and freely avail

able LiDAR GEDI CHMs Lang10m (Lang et al., 2022; Lang et al., 2022) 
(downloaded here: https://langnico.github.io/globalcanopyheight/) 
and Potapov30m (Potapov et al., 2021) (downloaded here: https://glad. 
umd.edu/dataset/gedi/). 

Fig. 1. The figure summarizes the aim of 
our study. Forests with high HH (assessed 
through CHM LiDAR data) have a complex 
vertical structure (seen from the side in the 
upper figure and from above in the lower 
figure), high environmental heterogeneity 
and high tree species diversity (forest on 
the left). On the other hand, forest with low 
HH might have lower species diversity 
(forest on the right). This concept has been 
already tested measuring the HH with 
airborne LiDAR data. In this study we test it 
using the recently published and freely 
available LiDAR GEDI CHMs Lang10m and 
Potapov30m.   
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Lang10m was derived fusing the GEDI and Sentinel-2 images 
through a deep convolutional neural network (Lang et al., 2022). It has 
spatial resolution of 10 m and is valid for the year 2020. The canopy top 
height was defined as the relative height at which 98% of the energy was 
returned (RH98). For the modelling GEDI observations for which the 
image was cloudy or snow-covered were excluded. 

Potapov30m was derived using GEDI, Landsat and SRTM data and a 
regression tree algorithm. It has spatial resolution of 30 m and is valid 
for the year 2019. The estimate of GEDI canopy height used in the 
models represents the 95th percentile of energy return height relative to 
the ground (RH95). To select the highest quality training and validation 
data they used for the modelling only observations collected in power 
beam mode, during the night, and with beam sensitivity 0.9. In addition, 
they excluded observation collected during the leaf-off season in 
temperate and boreal forests. 

Validation of Potapov30m using ALS data performed by the authors 
themselves showed ME of − 3.8 m, RMSE of 9.07 m, and MAE of 6.36 m 

for their map (Potapov et al., 2021). Lang et al. (2022) reported similar 
results ME of 0.2 m, RMSE of 8.8 m, and MAE of 6.9 m for validation of 
their map using ALS data. In addition, Lang et al. (2022) validated the 
Potapov30m map and according to their results, it appeared to be less 
accurate than their map (ME = − 4.8, RMSE  = 9.6 m; MAE  = 7.4 m). 

2.3.2. Local ALS LiDAR data 
In order to validate the GEDI CHMs and to calculate the canopy cover 

we used local Airborne Laser Scanning (ALS) LiDAR data. For the Italian 
study area, we derived the CHM from an ALS campaign completed in 
2006 by the Province of Bolzano/Bozen (free available here: http://geoc 
atalogo.retecivica.bz.it/geokatalog/). For the German study area were 
used the LiDAR data derived from an ALS campaign carried out in 2010 
(for the assessment of the DTM) and 2018 (for the assesment of DSM). 
For both study sites, the CHMs, calcuated as the difference between the 
DSM (derived from the point cloud using the R packege “lidR” through 
the function “rasterize canopy” with the “p2r” algorithm) and DTM 

Fig. 2. In white, the center of the 30 plots situated in the 2 forested areas of San Genesio/Jenesien and Monticolo/Montiggl in South Tyrol (Italy). Background image 
used: Google Image at February 21th 2023. Coordinates in WGS 84/ UTM zone 32 N (EPSG:32632). 

Fig. 3. The study area Traunstein (Germany). The border of the study area is shown in red. The white dots show the center of all the plots. Background image used: 
Google Image at February 21th 2023. Coordinates in WGS 84/ UTM zone 32 N (EPSG:32632). 
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(available with the point cloud for both study sites) were derived with a 
spatial resolution of 2.5 m (the highest possible for the Italian study area 
and for this reason used also for the German site) for the assessment of 
the canopy cover and of 10 m and 30 m for the validation of the GEDI 
CHMs (Lang10m and Potapov30m respectively). We refer to (Torresani 
et al., 2020) for more detailed information of the local ALS campaign. 

2.4. Canopy cover and forest density 

Following the work of Torresani et al. (2020) the canopy cover was 
calculated for each plot through the following formula: 

CC =
px2m

pxtot
*100 (2)  

where: 

CC  = Canopy cover 
px2m = number of pixels with a CHM  > 2 m 
pxtot = total number of pixels 

Since the point cloud of the Italian ALS data allowed to create a CHM 
with the highest spatial resolution of 2.5 m, this resolution was chosen to 
calculate the canopy cover for both Italian and German study areas. The 
forest tree density was estimated as the number of trees per plot. 

2.5. Heterogeneity indices 

HH was calculated using the 2 GEDI CHMs with 4 different hetero
geneity indices: the Rao’s Q index, the Coefficient of Variation (CV), the 
Shannon’s H index and the Simpson’s D index. The Rao’s Q index 
(formula 3) was developed by Rao (1982), successively Botta-Dukát 
(2005) suggested it as a functional diversity index in ecology. Rocchini 
et al. (2017) proposed this measure as heterogeneity index to be used 
with remote sensing data using the following formula: 

Q =
∑N

i,j=1
dij × pi × pj (3)  

where: 

Q  = Rao’s Q index, used in remote sensing application 
pi=pj=1/N = relative abundance of pixel i, j in a selected area (i.e. 
region of interest, raster) composed of N pixels 
dij = distance/dissimilarity between pixel i and j (dij = dji and dii =

0) 

In this study we calculated dij as a simple Euclidean distance based on 
a single layer (GEDI CHMs raster Lang10m and Potapov30m). 

The CV (formula 4) largely used in various ecological researches as 
heterogeneity index (Gholizadeh et al., 2018; Levin et al., 2007), is 
calculated as follow: 

CV = SD/x (4)  

where: 

CV = Coefficient of Variation 
SD = Standard Deviation of the pixel values within a selected area 
x = mean of the pixel values within a selected area 

The Shannon’s H index, largely used in ecology, can be used also in 
remote sensing application (Rocchini et al., 2017) using the following 
formula: 

Hrs = −
∑q

i=1
pi*log

(
pi
)

(5)  

where: 

Hrs = Shannon’s H index used in remote sensing 
q = unique numerical pixel values within a selected area 
pi = relative abundance of each q 

The Simpson’s D’s index is another measure used in ecology for 
assessing diversity (Kumar et al., 2022; DeJong, 1975), it can be used as 
heterogeneity measure with remote sensing data (formula 6), relying 
only on the relative abundance of the pixels within the considered plot/ 
area (Rocchini et al., 2021). 

D =
∑n

i=1
p2

i (6)  

where: 

D = Simpson index 
n = total number of pixels of a specific value 
pi = relative abundance of a pixel value in a CHM raster plot 

2.6. Workflow 

The approach proposed in this study is summarized in Fig. 4. Firstly 
(point 1), in each study area (30 Italian plots and 100 German plots) we 
validated both the GEDI CHMs (Lang10m and Potapov30m) with local 
ALS LiDAR data. Successively (point 2), for each study area, we used the 
4 heterogeneity indices (Rao’s Q, CV, Shannon’s H and Simpson’s D) to 
calculate the HH using both the GEDI CHMs (Lang10m and Pota
pov30m). The HHs have been successively correlated by linear regres
sion with the in situ tree species diversity (assessed through the 
Shannon’s H index and species richness). The coefficient of determina
tion (R2) was used to estimate the fitness of the model while P value to 
measure its statistical significance. Thereafter (point 3), we tested the 
above mentioned correlation in all the plots (n = 130) through a cross- 
validation analysis (k-fold n = 10, repeated n = 3, function “repeatedcv”, 
R package “caret”) using the parameters that showed the highest good
ness of fit (R2) and lower root mean square error (RMSE) and mean 
absolute error (MAE) at the point 2. The cross-validation was tested with 
a single linear regression (HH vs tree species diversity indices) and with 
a multiple linear regression (HH vs species diversity  + canopy cover  +
forest density -number of trees-). Finally, we visually show our best re
sults in order to have a clear comparison between the best-performing 
GEDI CHM, the calculated HH (mapped using the rasterdiv R package 
Rocchini et al., 2021), and the tree species diversity. 

2.7. Statistical analysis 

The accuracy of both the GEDI CHMs was exterminated by 
comparing them with the local ALS CHMs. The Coefficient of determi
nation (R2) derived from the linear regression of both the variables, the 
RMSE and the MAE were derived as follow: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1

/

n
∑n

k=1
(X − Y)2

√
√
√
√ (7)  

MAE = 1

/

n
∑n

k=1
|X − Y| (8)  

where: X is the GEDI CHM, Y is the local CHM and n is the number of 
pixels. R2, RMSE and MAE were calculated also when the HH (calculated 
with the GEDI CHMs using the 4 heterogeneity indices) was correlated 
by linear regression with the tree species diversity. In this case X is the 
HH values, Y is the species diversity (values of Shannon’s H or species 
richness) and n is the number of plots. 
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3. Results 

3.1. Validation of the GEDI CHMs 

The validation of the GEDI CHM Lang10m with local ALS CHM 
LiDAR data at 10 m spatial resolution is shown in Fig. 5. In the 30 Italian 
plots the goodness of fit between the two variables reach a value of 0.43 
while for the 100 German plots a value of 0.73. Both the correlations are 
significant (p value  < 0.05). 

The validation of the GEDI CHM Potapov30m with local ALS CHM 
LiDAR data at 30 m spatial resolution is shown in Fig. 6. In this case, the 
correlations show lower R2 values. In the Italian study area the corre
lation is not significant with a R2 that does not explain the variance in 
the GEDI CHM Potapov30m. In the German study area the correlation is 

significant with goodness of fit of 0.41. 
R2 values, Root mean square error (RMSE) and Mean Absolute Error 

(MAE) of the above mentioned correlations are shown in Table 1. Both 
GEDI CHM products, in relation to ALS CHM, overestimate canopy 
height by few meters, with a RMSE that range from 3.4 m to 6.5 m. 

3.2. Canopy cover and forest density 

For each of the study area, the mean of canopy cover and mean of 
number of trees for all plots are shown in Table 2. In the Italian study 
area, both the means are higher than in the German study area high
lighting its higher forest density. 

Fig. 4. The image shows the workflow of the proposed approach.  

Fig. 5. Validation of the GEDI CHM Lang10m with local ALS CHM LiDAR data at 10 m spatial resolution.  
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3.3. Correlations between the HH and the tree species diversity 

Figs. 7 and 8 show, for the Italian study area, the relationships be
tween the HH (calculated with the 4 heterogeneity indices) using both 
the GEDI CHMs Potapov30m and Lang10m and the tree species diversity 
assessed through the Shannon’s H index and the species richness 
respectively. In both the figures, when the HH is assessed using the GEDI 
CHM Lang10m, the correlations are all positive and significant (expect 
for the Shannon’s H and Simpson’s D heterogeneity indices when the 
species diversity is assessed through the species richness). Highest R2 

values are found for the Rao’s Q and CV indices (R2=0.49 and R2=0.58 
respectively when the tree species diversity is assessed with the Shan
non’s H and R2=0.49 and R2=0.58 respectively with the species rich
ness). For the GEDI CHM Potapov30m the goodness of fit for each 
heterogeneity indices is lower than the ones of the GEDI CHM Lang10m, 
the correlations are all positive and significant only for the Rao’s Q and 
CV indices. 

Figs. 9 and 10 show, for the German study area, the relationships 
between the HH (calculated with the 4 heterogeneity indices) using both 
the GEDI CHMs Potapov30m and Lang10m and the tree species diversity 
assessed through the Shannon’s H index and the species richness 
respectively. In both the figures, when the HH is assessed using the GEDI 
CHM Lang10m, the correlations are all positive and significant only for 
the Rao’s Q and CV. Highest R2 values are found for the latter indices 
(R2=0.41 and R2=0.32 respectively when the tree species diversity is 
assessed with the Shannon’s H and R2=0.31 for both the heterogeneity 

indices with the species richness). For the GEDI CHM Potapov30m the 
goodness of fit for each heterogeneity indices is lower than the ones of 
the GEDI CHM Lang10m, the correlations are positive (expect for the 
Simpson’s D and for Shannon’s H when the species diversity is assessed 
through the species richness) and significant only for the Rao’s Q and CV 
indices. 

Figs. 11 and 12 summarize the R2, RMSE and MAE derived from the 
correlations between the HH (assessed with both the GEDI CHMs 
Lang10m and Potapov30m) and tree species diversity (using the Shan
non’s H index and species richness) for the Italian and German study 
area respectively. For both study sites, focusing on the correlation 
having the same tree species diversity measures (red dot with green 
cross for the Shannon’s S index and blue triangle and yellow X for 
species richness), R2 values are higher in GEDI CHM Lang10m then in 
Potapov30. Differently, the RMSE and MAE are higher for Potapov30m 
than in Lang10m. Focusing on the heterogeneity indices, the Rao’ s Q 
index and the CV showed generally the highest R2, and the lowest RMSE 
and MAE, for both the tree diversity indices and GEDI CHMs. Finally, no 
particular differences are shown when HH (calculated with the various 
heterogeneity indices) is correlated with tree species diversity estimated 
with both Shannon’s H and species richness. 

Since in the above mentioned correlations the Rao’s Q and CV het
erogeneity indices showed the best results, in particular when tested 
with the GEDI CHM Lang10m we decided to test the correlations with 
these indices and GEDI CHM in all the 130 plots using a k-fold cross- 
validation analysis (k = 10, repeated 3 times). The results of the anal
ysis, shown in Table 3, highlight that the R2 values are similar for both 
the heterogeneity and species diversity indices while RMSE and MAE are 
higher when the HH is estimated with the CV. 

Previous studies (Torresani et al., 2020; Tamburlin et al., 2021) 
showed that the correlation between HH and species diversity is influ
enced by the canopy cover and by forest density. For this reason a 
multiple regression analysis including these variables (canopy cover and 
number of trees per plot as a proxy of forest tree density) was tested in 
the 130 plots through a cross-validation analysis for the assessment of 
tree species diversity. The results shown in Table 4, highlight that the R2 

increased explaining in average 13% more of variance. The R2 for both 
the indices are similar (ranging from 0.53 when the HH was calculated 
in the multiple regression including canopy cover, forest density and 
Rao’s Q and to 0.6 when the CV was included), while the RMSE and MAE 
are lower for the analysis with the Rao’s Q. 

Fig. 6. Validation of the GEDI CHM Potapov30m with local ALS CHM LiDAR data at 30 m spatial resolution.  

Table 1 
R2, RMSE and MAE of the correlation between local ALS CHM and CHMs derived 
from GEDI.   

Italy Germany  

Lang10m Potapov30m Lang10m Potapov30m 

R2 0.43 0.01 0.73 0.41 
RMSE (m) 5.71 4.81 3.43 6.54 
MAE (m) 5.03 4.19 2.38 5.63  

Table 2 
Mean of canopy cover and number of trees for all plots in each study area.   

Canopy Cover - canopy cover - Number of trees/plot (1 ha) 

Italy 97.19 995.23 
Germany 92.14 656.31  
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3.4. Correlation heterogeneity indices 

Fig. 13 shows how the HH calculated through the four different HH 
indices (Rao’s Q, CV, Shannon and Simpson) derived from the results of 
Table 3 are correlated each other by linear regression. The results shows 
a very strong binary picture: the HHs assessed trough Rao’s Q and CV are 
highly correlated while are not with Shannon’s H and Simpson’s D. On 
the other hand the latter are correlated with each other and not with 
Rao’s Q and CV. 

3.5. Visual spatialization of the results 

As an example, we decided to visually spatialize in a thematic map 
the correlation between the HH and tree species diversity (Fig. 14). For a 
practical reason we show the results over the German study area of 
Traunstein (one unique field and not split over different areas as the 
Italian plots). We calculated the HH through the Rao’s Q index with the 
Lang10m GEDI CHM (that according to the results of Fig. 12 reported 
the best results). The function “Rao” of the rasterdiv R package (Rocchini 
et al., 2021) was used to create the Rao’s Q map. We also added the map 
of the tree species location in order to have an overview of the tree 
species diversity of the area. In the figure, we highlighted as example, 
two distinct areas characterized by opposite values of HH and tree 
species diversity: the circle 1 shows a forested area with heterogeneous 
tree height (heterogeneous colours/heights in sub-figure B) with higher 
Rao’s Q values (dark green values in sub-figure C) and with high tree 
species diversity (sub-figure D). On the other hand, black circle 2 and 3 
show areas with homogeneous tree height (homogeneous colours/ 
heights in sub-figure B), low Rao’s Q values (lighter green values in sub- 
figure C) and low tree species diversity (sub-figure D). 

4. Discussion 

In this paper we tested the correlation between the in situ tree species 
diversity (assessed through the Shannon’s H index and the specie rich
ness) and HH calculated with 4 different heterogeneity indices (Rao’s Q, 
CV, Shannon’s H index, Simpson’s D index) using the recently published 
and freely available LiDAR GEDI CHMs Lang10m (Lang et al., 2022; 
Lang et al., 2022) and Potapov30m (Potapov et al., 2021). We tested this 
correlation separately over 30 study plots situated in the Italian Alps (in 
the Province of Bolzano-Bozen) and in 100 plots situated in the forested 
area of Traunstein (Germany). Successively we tested the correlation in 
all the 130 plots through a cross-validation analysis including in a 
multiple regression, information of canopy cover and forest tree density 
(assessed through number of trees per plot), that in previous studies 
(Torresani et al., 2020; Tamburlin et al., 2021) showed to influence the 
correlation. 

The analysis confirmed that the HH calculated from GEDI CHMs data 
at certain resolutions can be considered a good proxy of forest tree 
species diversity. The found relationship is related to the spatial 
complexity of the vertical forest structure: forests with high HH have a 
higher structural heterogeneity, with different ecological niches that can 
host different species (Torresani et al., 2020; Tamburlin et al., 2021). 
Light availability, along with other micro-climatic conditions, plays a 
crucial role in this relationship. Forests with a complex vertical structure 
let the light penetrate differently, creating different micro-habitats 
where both shade tolerant and intolerant species can grow (De Pauw 
et al., 2022; Brokaw and Scheiner, 1989). 

Overall, the results showed that the correlations were good in both 
study areas under specific conditions (GEDI CHMs, heterogeneity and 
diversity indices), with slightly better R2 values for the Italian study area 

Fig. 7. Linear regressions between the tree species diversity estimated through the Shannon’s H index and the HH calculated with the 4 heterogeneity indices (Rao’s 
Q, CV, Shannon’s H and Simpson’s D) using both the GEDI CHMs Potapov30m (blue points and line) and Lang10m (red points and line) in the Italian study area. In 
order to better compare the results, in the sub-plots of Shannon’s H and the Simpson’s D, 2 different y scales have been used. 
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characterized by higher canopy cover and number of trees. Also when 
tested as a whole through a cross validation analysis (Table 3) the cor
relations were generally strong, highlighting that the approach can hold 
true over different areas. As expected, the correlations improved when 
canopy cover and number of trees were also included in the multiple 
regression analysis (Table 4). In previous studies (Torresani et al., 2020; 
Tamburlin et al., 2021) these information have proven to play an 
important role in the relationship between HH and tree species diversity, 
showing lower performances in areas with low canopy cover, where the 
HH is high due to gaps in forest canopy, but tree species diversity is low. 
This is particularly interesting, since open areas should provide an 
environment where different tree species compete to share heteroge
neous resources, providing numerous species niches (Schnitzer and 
Carson, 2001). However, it might also be expected since forest species 
diversity is influenced not only by the availability of light created by 
gaps but also by other important factors such as exposition, elevation, 
inclination and water/nutrient availability). For this reason we feel that 
further analysis have to be conducted to test this approach in different 
forest ecosystems and especially in areas with a low canopy cover. 

Our results show that the relationship between tree species diversity 
and HH is influenced by a series of important factors that affect its 
strength and reproducibility. The first, concerns the GEDI CHM used for 
the assessment of HH. Generally speaking, the results showed that the 
HH assessed from the GEDI CHM Lang10m was better correlated to tree 
species diversity then when assessed with Potapov30m. This may be due 
the difference in spatial resolution of the two data-sets (10 m for 
Lang10m and 30 m for Potapov30m). According to the theory behind 
the HVH, the HH should reflect the forest vertical complexity, for this 
reason, a CHM with lower spatial resolution might be unsuitable for the 
estimation of tree species diversity (Torresani et al., 2020). Generally 

speaking, low CHM spatial resolution data make it difficult to detect 
smaller gaps/differences in the canopy which characterize different 
forest tree species and the overall biodiversity. In a previous study 
Torresani et al. (2020) investigated this important aspect highlighting 
that the finer the CHM spatial resolution for the assessment of HH, the 
higher the correlation with forest tree species diversity. Similarly, other 
studies (Huang et al., 2009; Miraki et al., 2021) showed that LiDAR data 
at coarse spatial resolution (or with low point density) are potential 
source of error in the estimation of forest vertical structure parameters 
(i.e. crown width and tree canopy height) and biodiversity variables. 

The strongest result shown by Lang10m in comparison with the 
Potapov30m may be due the fact that, in both study sites, the GEDI CHM 
Lang10m better correlated with local ALS data then the Potapov30m 
(Figs. 5 and 6). In the German study area the R2 derived from the vali
dation range from 0.73 (for Lang10m) to 0.41 (for Potapov30m) while 
for the Italian study area from 0.43 (for Lang10m) to 0.01 (for Pota
pov30m). The difference in validation accuracy between the two sites 
may be due to the temporal mismatch between the assessment of the 
GEDI CHMs (2019 and 2020 for Potapov30m and Lang10m respec
tively) and the ALS data acquisition (2018 and 2006 for the German and 
Italian study area respectively). In the Italian study area, the mismatch is 
relatively high (13/14 years) which makes the validating data (ALS 
LiDAR data) not strictly suitable to validate the GEDI CHMs (no recent 
LiDAR data are available). On the other hand, we are confident that in 
these years, there have been no serious disturbances or large clearcuts in 
the forest area. We feel that this is a frequent concern in studies where 
the temporal gap between the field data collection and LiDAR data 
acquisition can be significant (Polychronaki et al., 2015; Moudry ̀ et al., 
2021) mainly due to the infrequent LiDAR campaigns (Torresani et al., 
2020). We are confident that this issue does not alter the relationships 

Fig. 8. Linear regressions between the tree species diversity assessed through the species richness and the HH calculated with the 4 heterogeneity indices (Rao’s Q, 
CV, Shannon’s H and Simpson’s D) using both the GEDI CHMs Potapov30m (blue points and line) and Lang10m (red points and line) in the Italian study area. In 
order to better compare the results, in the sub-plots of Shannon’s H and the Simpson’s D, 2 different y scales have been used. 
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between HH and species diversity as the field data were collected in 
2015 and 2017 for the German and Italian study areas, respectively. 
Nevertheless, the continuous acquisitions of GEDI data (April 2019 to 
most likely Spring 2023) will provide a rich multi-temporal data-set on 
various vegetation structure attributes that allow the modelling of cur
rent conditions (e.g. using Landsat 8, Sentinel-2) or previous conditions 
(e.g. Landsat 5, Landsat 7) (Potapov et al., 2021; Rishmawi et al., 2022). 
Therefore, changes in forest structure history can be characterized and 
related to current forest structures since those are the product of past 
influences (e.g. disturbances) (Potapov et al., 2021). 

It is worth to underline that the accuracy of the GEDI CHMs is 
influenced also by other factors as the availability of the GEDI data over 
representative forest types and age cohorts, the optical information used 
to downscale the data and the presence of clouds over some areas (that 
can disproportionally omit some forests type while favoring others) 
(Potapov et al., 2021). Slopes and deep change of topography (Lefsky 
et al., 2007), footprint size and pulse width (Dubayah et al., 2020) 
together with residual geolocation uncertainties (Roy et al., 2021) are 
other factors that might affect the estimation of canopy height. The 
proprieties of the optical images and the regression algorithms used for 
the interpolation with GEDI data are also important factors that decrease 
the ability to accurately map the height of the canopy (Potapov et al., 
2021; Potapov et al., 2019; Lang et al., 2019; Lang et al., 2022; Lang 
et al., 2022). According to these limitations GEDI LiDAR data might not 
be as accurate as a local (e.g. from airborne or UAV) LiDAR data (Quirós 
et al., 2021; Dorado-Roda et al., 2021), but they represent nonetheless 
an important tool used for the estimation of different forest variables 
such as forest biomass (Duncanson et al., 2020; Silva et al., 2021), forest 
growth (Guerra-Hernández and Pascual, 2021) or disturbances (Francini 
et al., 2022) and as shown in this study also of forest structural het
erogeneity and thus of biodiversity. Most importantly, GEDI data allow 

to analyze and estimate these variables at global scale, over most of the 
Earth forest surface specially in remote areas where no local LiDAR data 
are available and where the vertical structure of the forest is very 
complex and poorly understood (Burns et al., 2020). 

The field-based diversity indices and the heterogeneity measures 
used to assess the HH are other important factors that influenced our 
outcomes. Regarding the field data, our results did not show particular 
differences between the two used indices (Shannon’s H and species 
richness) reaching similar levels of correlation with the HH assessed by 
the same heterogeneity index. This aspect is still widely debated in the 
studies where the variability of remotely sensing data is used to estimate 
biodiversity (e.g. for the SVH). Different studies (Marzialetti et al., 2021; 
Rocchini et al., 2004) have shown that species richness (number of 
species per plot) is more strongly and sensitively correlated with the 
variability of the remote sensing data than the Shannon’s H index, which 
considers both abundance and number of species. In contrast, other 
studies have shown that the indices that embeds both the abundance and 
the richness of the considered species (e.g. the Shannon’s index) better 
correlate to the variability of the remote sensing data (Oldeland et al., 
2010; Madonsela et al., 2017; Heumann et al., 2015). We believe that 
further investigations are needed to understand what drives the rela
tionship between these different variables. 

Regarding the heterogeneity indices, our results showed that the CV 
and the Rao’s Q index performed successfully in the assessment of the 
HH, in both study sites and through the cross validation analysis. The 
indices showed similar R2 values but with a consistent difference in the 
RMSE and MAE values that were lower for the Rao’s Q index. From a 
theoretical point of view, the CV considers only the pixels value 
(through mean and standard deviation) and not their relative abundance 
within the plots. On the other hand, the Rao’s Q index, that has shown 
excellent results as spectral heterogeneity index in different SVH studies 

Fig. 9. Linear regressions between the tree species diversity estimated through the Shannon’s H index and the HH calculated with the 4 heterogeneity indices (Rao’s 
Q, CV, Shannon’s H and Simpson’s D) using both the GEDI CHMs Potapov30m (blue points and line) and Lang10m (red points and line) in the German study area. In 
order to better compare the results, in the sub-plots of Shannon’s H and the Simpson’s D, 2 different y scales have been used. 
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Fig. 10. Linear regressions between the tree species diversity assessed through the species richness and the HH calculated with the 4 heterogeneity indices (Rao’s Q, 
CV, Shannon’s H and Simpson’s D) using both the GEDI CHMs Potapov30m (blue points and line) and Lang10m (red points and line) in the German study area. 

Fig. 11. R2, RMSE and MAE derived from the correlations between HH (calculated with the four heterogeneity indices: Rao’s Q, CV, Shannon’s H and Simpson’s D 
using the CHMs Lang10m and Potapov30m) and tree species diversity (assessed through the Shannon’s H index and the species richness) in the Italian study area. 
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(Torresani et al., 2021; Rocchini et al., 2017; Thouverai et al., 2023), has 
the advantage to include both the relative abundance and the value of 
the pixels (through the Euclidean distance between the pixel values) 
(Torresani et al., 2022) thus the whole structural information derived 
from the LiDAR data heterogeneity. This index, when used with a single 
layer/raster as in this study, succeeds in becoming a good proxy of 
heterogeneity by narrowing to variance using half the squared Euclidean 
distance (1/2 d2

ij). We refer to (Rocchini et al., 2017; Ricotta, 2005; 

Fig. 12. R2, RMSE and MAE of the correlations between HH (calculated with the four heterogeneity indices: Rao’s Q, CV, Shannon’s H and Simpson’s D using the 
CHMs Lang10m and Potapov30m) and tree species diversity (assessed through the Shannon’s H index and the species richness) in the German study area. 

Table 3 
R2, RMSE and MAE derived from the k-fold (n = 10 repeated 3 times) cross 
validation between the tree species diversity (Shannon’s H and Species richness) 
and the HH (assessed with the GEDI CHM Lang10m using the Rao’s Q and CV 
indices) over the total number of plots (30 Italians  + 100 German  = 130 plots).   

HH Rao’s Q Lang10m  

R2 RMSE (m) MAE (m) 

Shannon’s H 0.43 0.59 0.49 
Species Richness 0.45 0.59 0.49   

HH CV Lang10m  

R2 RMSE (m) MAE (m) 

Shannon’s H 0.42 2.14 1.70 
Species Richness 0.43 2.10 1.70  

Table 4 
R2, RMSE and MAE derived from the k-fold (n = 10 repeated 3 times) cross 
validation between the tree species diversity (Shannon’s H and Species richness) 
and the HH (assessed with the GEDI CHM Lang10m using the Rao’s Q and CV 
indices) over the total number of plots (30 Italians  + 100 German  = 130 plots) 
using a multiple regression analysis (HH  + canopy cover  + number of trees).   

Rao’s Q  + canopy cover  + density  

R2 RMSE (m) MAE (m) 

Shannon’s H 0.53 0.65 0.53 
Species Richness 0.53 0.58 0.47   

CV  + canopy cover  + density  

R2 RMSE (m) MAE (m) 

Shannon’s H 0.59 2.13 1.75 
Species Richness 0.60 1.97 1.68  

Fig. 13. Correlation matrix (R2) between the HH calculated with the four 
heterogeneity indices (Rao’s Q, CV, Shannon’s H and Simpson’s D). The data 
refers to the results of Table 3. 
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Ricotta and Szeidl, 2006; Ricotta et al., 2012) for further details on the 
mathematical characteristics of Rao’s Q. Differently, the Shannon’s H 
and Simpson’s D-index, used in this work, have shown to be inefficient 
in assessing HH. Both indices do not account for the numerical values of 
the GEDI CHM but they rely only on the relative abundance of the LiDAR 
pixels within a specific raster/area of interest (Rocchini et al., 2017). For 
this reason they fail to characterize the heterogeneity of tree heights that 
depend on both the tree height (values) and distribution (abundance). 

An interesting point is related to the heterogeneity values derived 
from the Rao’s Q and CV from both the used GEDI CHMs. The results 
showed that Lang10m provide much lower values of HH than in Pota
pov30m (Figs. 7–10). This was also found in a recent study (currently 
under review) (Moudrý, 2022) where the Potapov30m model, compared 
to Lang10m, appears to have higher CHM heterogeneity with more 
extreme CHM values (increasing the Rao’s Q and CV values in our 
study). Lang10m, having a finer spatial resolution (derived fusing GEDI 
data and Sentinel-2 images using a deep learning algorithm), is more 
spatially precise and, in our areas characterized by a generally high 
density (Table 2) and HH which does not reach extremely high values, 
properly adapted. 

A major concern that might arise in this study is related to the use of 
the CHM for the assessment of HH thus not considering other GEDI 
metrics or other digital layers (e.g. optical data) related the forest 
structure. This choice has a twofold explanation: the first is related to the 
intrinsic aim of this study namely to investigate whether the recently 
published and freely available LiDAR GEDI CHMs developed by Lang 
et al. (2022), Lang et al. (2022), and by Potapov et al. (2021), could be 
used for estimating HH and thus tree species diversity. The second is 

related to the results obtained by Tamburlin et al. (2021): in their study 
the authors tested several LiDAR metrics (e.g., entropy and standard 
deviation of point cloud distribution, percentage of returns above mean 
height) for the estimation of HH, finding that the CHM was indeed the 
best metric in order to characterized the HH and tree species diversity. 
Similarity, Burns et al. (2020), highlighted that the metrics that most 
characterize the canopy structure derived from simulated GEDI LiDAR 
data were the most important for estimation of forest vertical variability 
and the spatial distribution of different species of birds. Again Fagua 
et al. (2021), highlighted that the LiDAR metrics that explained the 
variation of the impulse density namely those more sensitive to canopy 
stratification were the most important for prediction of alpha diversity 
in tropical forests. The analysis on vertical forest structure could be 
supplemented by relative height metrics (GEDI L2A datasets) for the 
characterization of low and understory vegetation. Besides the assess
ment of vertical forest structure, GEDI holds additional datasets on 
horizontal forest structure, namely total canopy cover and Plant-Area- 
Index, but also vertical structure complexity is derived as Foliage- 
Height-Diversity-Index (L2B datasets). Furthermore, novel information 
on above-ground biomass density (L4A dataset) could be another proxy 
for forest structure composition in order to delineate hot and cold spots 
of biodiversity (Dubayah et al., 2020). 

A further concern that could emerge is related to the limited number 
of study areas used to test and validate our approach. As previously 
stressed, this approach represents a first analysis in order to assess 
whether the new freely available global CHMs derived by GEDI data 
could be used for estimating HH and thus tree species diversity. We are 
furthermore aware that forest biodiversity is not only affected by the 

Fig. 14. Sub-figure A shows the RGB image of the Traunstein area (Google Image June 15th 2021). Sub-figure B shows the GEDI CHM Lang10m. Sub-figure C shows 
the Rao’s Q values for the whole area while sub-figure D the tree species location. The circle 1 shows as an example a forested area with heterogeneous tree height 
(heterogeneous colours/heights in sub-figure B) with higher Rao’s Q values (dark green values in sub-figure C) and with high tree species diversity (sub-figure D). On 
the other hand, black circle 2 and 3 show areas with homogeneous tree height (homogeneous colours/heights in sub-figure B), low Rao’s Q values (lighter green 
values in sub-figure C) and low tree species richness (sub-figure D). 
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tree height variability, but also by a series of factors such as light 
availability, topography, micro-climate and soil proprieties. Our hy
pothesis was not grounded on capturing directly tree species diversity 
but on testing an indirect method for the assessment of tree HH by GEDI 
CHMs LiDAR data. The outcomes highlighted that the variability of this 
information can be considered a proxy of the forest structure hetero
geneity which in turn is related to species diversity (Torresani et al., 
2020). However we are aware that the relationship between ‘high HH’ 
and ‘high tree species diversity’ might not always hold true in all the 
forests. As an example, the Swiss Stone Pine/Larch forests (Pinus cem
bra/Larix decidua), considered at the “climax state” that can be found at 
the limit of the vegetation in the upper altitudinal belt, are characterized 
by a heterogeneous vertical and horizontal structure having on the other 
hand a poor diversity in species; in this cold conditions, just few pioneer 
tree species could survive (low biodiversity) creating a structurally 
heterogeneous and low density forest (high HH). For this reason we 
consider this study as a preliminary work in understanding forest 
biodiversity through the use of GEDI CHM data being aware of its ad
vantages and limitations. 

5. Conclusion 

In this paper, we examined the relationship between tree species 
diversity (measured by Shannon’s H index and species richness) and 
forest HH (assessed using four different indices) using recently published 
and freely available LiDAR GEDI CHMs (Lang10m and Potapov30m) in 
two forest areas in Europe (Italy and Germany). Our findings indicate 
that GEDI CHMs can be used to evaluate biodiversity patterns in forest 
ecosystems by estimating HH, which is related to tree species diversity. 
However, the results also show that the proposed method is influenced 
by various factors such as the GEDI CHM dataset and its related spatial 
resolution, the heterogeneity indices used to calculate the HH, and the 
forest density. Our study is a first application example but further 
analysis in other forest areas with different types and densities of forests, 
using different heterogeneity indices, are needed before the approach 
can be considered as a generalizable method. Additionally, it would be 
beneficial to also analyze the vegetation in the various herbaceous or 
shrub layers to have a more comprehensive view of the entire forest 
biodiversity. Finally, it would be valuable to combine multiple remote 
sensing information e.g optical (from Sentinel-2 or Landsat satellites) 
LiDAR (from local ALS and GEDI) or other derived products (e.g. in
formation of topography), in order to obtain a more detailed view of 
heterogeneity. We suggest that this proposed approach, based on the 
assessment of habitat heterogeneity using recently published and freely 
available LiDAR GEDI CHMs, could be used by ecologists, botanists, or 
forest stakeholders as a preliminary analysis for identifying biodiversity 
hotspots, particularly in remote areas where in situ data are incomplete 
or not available and the vertical structure of the forest and its dynamics 
are poorly understood. 
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Gholizadeh, A., Žižala, D., Saberioon, M., Boruvka, L., 2018. Soil organic carbon and 
texture retrieving and mapping using proximal, airborne and sentinel-2 spectral 
imaging. Remote Sens. Environ. 218, 89–103. 

Guerra-Hernández, J., Pascual, A., 2021. Using gedi lidar data and airborne laser 
scanning to assess height growth dynamics in fast-growing species: a showcase in 
spain. For. Ecosyst. 8 (1), 1–17. 

Gupta, R., Sharma, L.K., 2022. Mixed tropical forests canopy height mapping from 
spaceborne lidar gedi and multisensor imagery using machine learning models. 
Remote Sens. Appl.: Soc. Environ. 27, 100817. 

Hakkenberg, C., Zhu, K., Peet, R., Song, C., 2018. Mapping multi-scale vascular plant 
richness in a forest landscape with integrated lidar and hyperspectral remote- 
sensing. Ecology 99 (2), 474–487. 

M. Torresani et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S1574-9541(23)00111-5/h0005
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0005
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0010
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0010
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0010
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0010
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0015
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0015
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0015
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0020
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0020
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0025
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0025
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0030
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0030
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0030
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0035
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0035
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0035
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0040
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0040
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0040
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0040
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0045
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0045
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0050
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0050
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0050
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0050
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0055
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0055
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0055
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0060
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0060
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0060
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0060
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0065
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0065
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0065
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0065
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0070
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0070
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0070
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0070
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0075
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0075
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0075
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0080
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0080
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0080
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0085
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0085
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0085
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0090
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0090
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0090
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0095
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0095
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0095
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0100
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0100
http://refhub.elsevier.com/S1574-9541(23)00111-5/h0100


Ecological Informatics 76 (2023) 102082

15

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., 
Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., et al., 2013. High-resolution 
global maps of 21st-century forest cover change. Science 342 (6160), 850–853. 

Heumann, B.W., Hackett, R.A., Monfils, A.K., 2015. Testing the spectral diversity 
hypothesis using spectroscopy data in a simulated wetland community. Ecol. Inform. 
25, 29–34. 

Hoffrén, R., Lamelas, M.T., de la Riva, J., Domingo, D., Montealegre, A.L., García- 
Martín, A., Revilla, S., 2023. Assessing gedi-nasa system for forest fuels classification 
using machine learning techniques. Int. J. Appl. Earth Obs. Geoinf. 116, 103175. 

Huang, H., Gong, P., Cheng, X., Clinton, N., Li, Z., 2009. Improving measurement of 
forest structural parameters by co-registering of high resolution aerial imagery and 
low density lidar data. Sensors 9 (3), 1541–1558. 

Kacic, P., Hirner, A., Da Ponte, E., 2021. Fusing sentinel-1 and-2 to model gedi-derived 
vegetation structure characteristics in gee for the paraguayan chaco. Remote Sens. 
13 (24), 5105. 

Kacic, P., Kuenzer, C., 2022. Forest biodiversity monitoring based on remotely sensed 
spectral diversity—a review. Remote Sens. 14 (21), 5363. 

Kumar, P., Dobriyal, M., Kale, A., Pandey, A., Tomar, R., Thounaojam, E., 2022. 
Calculating forest species diversity with information-theory based indices using 
sentinel-2a sensor’s of mahavir swami wildlife sanctuary. Plos One 17 (5), 
e0268018. 

Lang, N., Jetz, W., Schindler, K., Wegner, J.D., 2022. A high-resolution canopy height 
model of the earth. arXiv preprint arXiv:2204.08322. 

Lang, N., Kalischek, N., Armston, J., Schindler, K., Dubayah, R., Wegner, J.D., 2022. 
Global canopy height regression and uncertainty estimation from gedi lidar 
waveforms with deep ensembles. Remote Sens. Environ. 268, 112760. 

Lang, N., Schindler, K., Wegner, J.D., 2019. Country-wide high-resolution vegetation 
height mapping with sentinel-2. Remote Sens. Environ. 233, 111347. 

Lefsky, M.A., Keller, M., Pang, Y., De Camargo, P.B., Hunter, M.O., 2007. Revised method 
for forest canopy height estimation from geoscience laser altimeter system 
waveforms. J. Appl. Remote Sens. 1 (1), 013537. 

Levin, N., Shmida, A., Levanoni, O., Tamari, H., Kark, S., 2007. Predicting mountain 
plant richness and rarity from space using satellite-derived vegetation indices. 
Divers. Distrib. 13 (6), 692–703. 

Liu, X., Su, Y., Hu, T., Yang, Q., Liu, B., Deng, Y., Tang, H., Tang, Z., Fang, J., Guo, Q., 
2022. Neural network guided interpolation for mapping canopy height of china’s 
forests by integrating gedi and icesat-2 data. Remote Sens. Environ. 269, 112844. 

Madonsela, S., Cho, M.A., Ramoelo, A., Mutanga, O., 2017. Remote sensing of species 
diversity using landsat 8 spectral variables. ISPRS J. Photogramm. Remote Sens. 133, 
116–127. 

Marselis, S.M., Keil, P., Chase, J.M., Dubayah, R., 2022. The use of gedi canopy structure 
for explaining variation in tree species richness in natural forests. Environ. Res. Lett. 
17 (4), 045003. 

Marzialetti, F., Cascone, S., Frate, L., Di Febbraro, M., Acosta, A.T.R., Carranza, M.L., 
2021. Measuring alpha and beta diversity by field and remote-sensing data: A 
challenge for coastal dunes biodiversity monitoring. Remote Sens. 13 (10), 1928. 

Marzialetti, F., Di Febbraro, M., Malavasi, M., Giulio, S., Acosta, A.T.R., Carranza, M.L., 
2020. Mapping coastal dune landscape through spectral rao’s q temporal diversity. 
Remote Sens. 12 (14), 2315. 

Michele, T., Duccio, R., Marc, Z., Ruth, S., Giustino, T., 2018. Testing the spectral 
variation hypothesis by using the rao-q index to estimate forest biodiversity: Effect of 
spatial resolution. In: IGARSS 2018–2018 IEEE International Geoscience and Remote 
Sensing Symposium. IEEE, pp. 1183–1186. 

Miraki, M., Sohrabi, H., Fatehi, P., Kneubuehler, M., 2021. Individual tree crown 
delineation from high-resolution uav images in broadleaf forest. Ecol. Inform. 61, 
101207. 

Mittermeier, R.A., Myers, N., Thomsen, J.B., Da Fonseca, G.A., Olivieri, S., 1998. 
Biodiversity hotspots and major tropical wilderness areas: approaches to setting 
conservation priorities. Conserv. Biol. 516–520. 
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