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Highlights
Biodiversity continues to decline rapidly,
despite decades of repeated national
and international policy efforts. Agricul-
tural intensification is a major driver of
biodiversity losses, while conversion to
organic farming has been suggested as
a key technique to halt or reverse this
trend.

In contrast to this widespread view, certi-
fied organic agriculture raises local rich-
ness of widespread species by just a
third when compared to conventional
farming. This is achieved throughwaiving
We challenge the widespread appraisal that organic farming is the fundamental
alternative to conventional farming for harnessing biodiversity in agricultural
landscapes. Certification of organic production is largely restricted to banning
synthetic agrochemicals, resulting in limited benefits for biodiversity but high
yield losses despite ongoing intensification and specialisation. In contrast, suc-
cessful agricultural measures to enhance biodiversity include diversifying crop-
land and reducing field size, which can multiply biodiversity while sustaining
high yields in both conventional and organic systems. Achieving a landscape-
level mosaic of natural habitat patches and fine-grained cropland diversification
in both conventional and organic agriculture is key for promoting large-scale bio-
diversity. This needs to be urgently acknowledged by policy makers for an agri-
cultural paradigm shift.
synthetic agrochemicals, but leads to
considerable yield losses, requiring the
conversion of more land to agriculture
to obtain similar yields.

Diversifying cropland and reducing field
size on a landscape level can multiply
biodiversity in both organic and conven-
tional agriculture without reducing crop-
land productivity.

Complementing such increases in crop-
land heterogeneity with at least 20%
seminatural habitat per landscape
should be a key recommendation in cur-
rent biodiversity frameworks.
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Adjusting expectations from organic farming
Biodiversity continues to decline, despite the repeated implementation of international conservation
conventions, such as the Convention on Biological Diversity (1992), the UN Decade of Biodiversity
(2011–2020), and many other biodiversity conservation schemes, which had little success [1,2].
Agriculture is considered the main cause of global biodiversity decline [3–5], but conservation
objectives still collide with FAO calls for higher crop production to feed the world [6].

The current model of agricultural intensification, based on agrochemical inputs, large monocul-
tures and landscape homogenisation, has successfully increased yields, but is associated with
severe losses of biodiversity and ecosystem services, even in neighbouring nature reserves
[3,5–7]. Current trends can only be reversed by a concerted effort to fundamentally redesign
farming systems and agricultural landscapes [8–10]; that is, a paradigm shift in agriculture.
Certified organic farming, that is, banning synthetic agrochemicals [11] to achieve sustainability
in agricultural systems in general and biodiversity conservation in particular, is often claimed to
be the fundamental alternative to conventional farming [12–14]. However, the contribution of cer-
tified organic agriculture to stop the losses in biodiversity appears to be exaggerated in the public
perception [15,16]. In fact, switching from conventional to organic practices increases local spe-
cies richness by just a third [17], but leads to considerable yield losses, so that more land is
needed to produce the same amount of food [11,18]. Surprisingly, a wealth of biodiversity-
friendly measures that can enhance biodiversity and can be implemented in conventional
agriculture, have so far been poorly adopted in current agricultural systems [19–23].

Here, we challenge the widespread appraisal that organic farming is the fundamental alternative
to conventional farming for promoting or restoring biodiversity in agricultural landscapes. After
considering measures essential for biodiversity-friendly farming, we propose more effective
solutions towards biodiversity friendly landscapes and ways to integrate local and landscape
scales in existing organic and conventional farming systems as well as in agricultural policies.
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Benefits and limitations of organic farming for biodiversity conservation
Certified organic farming can enhance biodiversity when compared to conventional farming. On av-
erage, organic farming across the world’s crops increases local species richness by ~34% and
abundance by ~50% [17,24,25], with plants and bees benefitting most and other arthropods
and birds to a smaller degree [11]. Benefits also vary with crop type and landscape context [17].
Organic farming strives for environmental benefits, sustaining soil fertility and biodiversity, and pro-
hibits synthetic fertilisers, synthetic pesticides, and genetically modified organisms [11,12,26]. In
particular, the replacement of herbicides by mechanical weeding is important for biodiversity con-
servation, because higher weed cover benefits many organisms [27–30]. Practices such as crop
diversification, small fields, green manure, low fertiliser input, and restoration of natural landscape
elements are often recommended by organic food organisations and can bemore prevalent on or-
ganic than conventional farms [31,32], but they are not formal part of certification regulations [33].
Mainstreaming of organic agriculture in the public, pushed by green policies and NGO activities,
continues to play an important role in its success, promoting empathy for and trust in organic cer-
tification schemes. Lastly, organic products are more profitable for farmers, while consumers, not
governments, pay for most of the premium prices [11,25,30,34].

However, there are also important limitations to the biodiversity benefits of organic farming,
resulting from reduced yields, misconceptions about pesticide use, taxon-specific benefits,
and commercial intensification of production. While reducing food waste and meat consump-
tion are important for global food security [6,18], lower crop yields and the additional land
needed for similar yields are major obstacles for organic farming to benefit biodiversity conser-
vation [35]. When biodiversity benefits are measured per unit of land necessary for a defined
agricultural output or yield (e.g., number of kilograms of wheat produced) and not simply per
unit of agricultural land (e.g., a hectare of wheat), the biodiversity benefits of organic farming
can disappear [10,18,36]. Globally and across all major crops, organic farming yields are
lower by 19–25% [18]. Vegetables and cereals show the highest yield gaps [37], with up to
50% yield decrease in wheat [30,35]; however, yields of fruits and oilseed crops are not
lower [37].

Moreover, it is a myth that organic farms principally waive pesticides. Pesticides are allowed
under organic labels as long as they are derived from natural substances rather than synthetic
ones [11]. Widespread insecticides used in organic farming include natural pyrethrin, derived
from chrysanthemum, and azadirachtin from the Asian neem tree. Copper sulfate is often applied
to cope with fungal and bacterial diseases, for example, in vineyards, orchards, and vegetables
[38], but is persistent and accumulates in soils [39]. Natural pesticides can do as much damage
as synthetic pesticides [40]. While the vast majority of organic arable crops are rarely treated with
pesticides, potatoes, vegetables, hops, grapes, and other fruits are regularly and heavily treated
with natural pesticides. For instance, spraying in organic grapes or apples has been shown to be
just 20% less but can also be more than in conventional fields [38,39]. Overall, this suggests that
smart application strategies for pesticide use (e.g., Integrated Pest and Pollinator Management
techniques) are needed regardless of organic or conventional agricultural systems [14,41,42].
Similarly, harmful overfertilisation occurs not only with mineral fertilisers, but also with manure
[43].

Importantly, organic farming enhances only a limited spectrumof species [5,44]. In particular, noncrop
plants benefit due to missing herbicides, whereas more mobile, landscape-dependent insect popu-
lations benefit less [31]. Furthermore, reduced applications of agrochemicals enhance common in-
sect species associated with agriculture, but not the less common species associated with a great
diversity of seminatural habitats. These seminatural habitats include hedges, herbaceous field
920 Trends in Ecology & Evolution, October 2021, Vol. 36, No. 10



Trends in Ecology & Evolution
boundaries, and traditional, uneconomic agroecosystems such as calcareous grasslands and or-
chard meadows [21,45]. In fact, a meta-analysis of agrienvironment schemes found that off-field
measures, such as field margins and hedgerows, are more than twice as effective in promoting bio-
diversity as in-fieldmeasures such as organicmanagement [46]. For example, higher farmland habitat
diversity, but not conversion to organic farming, increases butterfly diversity on farms by ~50% [45].
Increasing hedge length per field by 250m raises bird diversity from one to 12 species, whereas con-
version from conventional to organic farming increased species richness by only 50% [21].

Lastly, current organic production is increasingly intensified, specialised, and often far away from
the idealism and enthusiasm of the original organic movement (Figure 1). In contrast to the small
and diversified family farms that characterised the beginning of the organic movement, modern
organic arable fields can be huge monocultures, resembling conventional fields. Organic vegeta-
bles often come from sterile greenhouse blocks or large-scale cultures under plastic sheets, cov-
ering entire landscapes. The Almeria Province (Spain) is the heart of Europe’s intensive
agriculture, where >50%of fruits and vegetables are grown under plastic sheets, with the propor-
tion of organic farming increasing over the last decade from 1.4% to 10.3% [47]. Further exam-
ples of landscape-damaging practices of organic production include vegetables that are
produced in greenhouse blocks, favourably doubling yields by intensification and extending
growing seasons, but at high cost for biodiversity [48]. Overall, pesticide use, limited species ben-
efits, and the above intensification suggest that certified organic production is not the silver bullet
for current biodiversity conservation and agricultural production.

Local and farm scale biodiversity-friendly land-use practices
Diversifying agricultural systems is key for the restoration of biodiversity and associated ecosystem
services, such as pollination, and biological pest and weed control [5,49,50] (Table 1 and Table 2).
Agricultural land, in particular in Europe and North America, is increasingly shaped by largemonocul-
tures and short crop rotations to simplify production techniques and to specialise on the best-selling
products. Diverse crop rotations are increasingly missing or dominated by just one crop (e.g., wheat
after wheat or maize after maize), or only up to three crop species (e.g., standard conventional crop
sequences with wheat, barley, and oilseed rape [51,52]). These simplified crop rotations deplete
soils, and promote pest infestations, resistance through repeated pesticide applications, and the
risk of resource bottlenecks for pollinators and biocontrol agents [53]; all of which also increase the
risk of yield declines [52]. In contrast, resource continuity provided by a mixed pattern of crops,
alone or combined with land-sharing practices, such as wildflower strips, effectively increases the
stability of ecosystem services, such as pollination and biological pest control [53–55]. Globally,
crop rotations are only 15% longer in organic than conventional farming (4.5 instead of 3.8 years).
Still, organic farms have on average 48% higher crop species richness [56]. Diversification of organic
farming by multicropping and diversified crop rotations may reduce the yield gap to just 8–9% [57].
However, crop rotations could be longer, for example, over at least a 7-year period [26], but there is
little uptake in both organic and conventional agriculture [58]. Instead, the current trend in organic
farming is, similar to conventional agriculture, to specialise and intensify [48,59].

Hence, measures to enhance biodiversity include temporal and spatial crop diversification, as
reported from both temperate and tropical regions [60–62], but also cover crops or green ma-
nure, agroforestry, that is, combining trees and crops [63,64], or crop–livestock systems [65]
and other biodiversity-friendly measures [49] (Table 1). Seminatural habitats adjacent to
croplands may include linear or patchy landscape elements, such as hedges and woody or
herbaceous patches [23,49], facilitate spillover to small fields and enhance on-farm biodiversity
[66,67]. However, targeted on-farm measures to restore biodiversity are not mandatory in any
organic certification scheme [33].
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Landscape-scale diversification for biodiversity
We emphasise the key role of landscape-level species pools and suggest two major biodiversity-
friendly measures at the landscape scale that are missing in organic certification [33] and
agrienvironmental EU policies. Landscape changes often provide much larger biodiversity bene-
fits than the incentivised changes of local management [30,68]. First, we provide evidence for the
need to restore seminatural habitats in simplified landscapes. Second, we focus on augmenting
landscape heterogeneity through small and diversified crop fields.

Restoring simplified landscapes with seminatural habitat
Local field or farm biodiversity is determined by the available pool of populations and species in
the surrounding landscapes. In structurally poor, simplified landscapes, biodiversity is reduced
so that only few species can be locally expected – independent of the type of local management
(Table 1). For example, current dramatic insect declines in German grasslands (67% of the bio-
mass, 34% of the species within 10 years, 2008–2017) were mainly observed in simplified land-
scapes dominated by annual crops, irrespective of the local intensification level [4]. This spatial-
scale mismatch, that is, the usual focus on local management instead of managing landscapes
and their species pools, needs to be addressed for successfully redesigning organic certification
schemes [33] and policy instruments for biodiversity conservation [69].

Landscape complexity, that is, the amount of seminatural habitats in the agricultural landscape, is well
known to increase species pools, linking resources and populations of cropland and natural area
[1,67,70], although effects are variable and taxon specific [41,71]. For example, wild bee richness in
standardised field margin strips doubles when landscape-wide habitat increases from 10% to 40%
[72] (Figure 2B and Table 1). Complex landscapes also enhance local availability of key predators
and parasitoids for pest control [73–75], including a tenfold increase in parasitism of the pollen beetle,
halving oilseed rape damage [76]. Interestingly, 29% of the local species richness in protected calcar-
eous grasslands, which are among the most species rich habitats in Central Europe, is lost when the
percentage of arable land in the surrounding landscape increases from 10% to 80% (Figure 2A,C) [7].
Complex landscapes support a broader range of resources and microclimates, thereby
counteracting biotic homogenisation [70] and promoting stability of population dynamics [77].

There is evidence that a 20% threshold level of seminatural habitat in agricultural landscapes is key to
biodiversity maintenance [76,78–80]. According to percolation theory [81], habitat loss below 20%
causes disproportionally high losses in patch connectivity. This can disrupt exchange of organisms
across the landscape, and therefore, their survival probability. Connectivity loss may be also
counterbalanced by reduced field sizes per landscape aswell as crop diversification, but quantification
Figure 1. Examples of organic farming practices (A–D) and a conceptual figure pointing to yield versus
biodiversity potentials of certified organic (E, F) and diversified conventional farming (G, H). Photos illustrating
the multifaceted forms of organic agriculture: (A) traditional small-scale farming (organic farm in Madeira, photo licensed
under CC BY-NC-ND 2.0); (B) large-scale cereal monocultures (winter wheat, photo: Silvia Fusaro); (C) greenhouse
production (biological vegetable production in Austria; photo by Mario Sedlak, licensed under CC BY 3.0); and (D) fields cov-
ered by plastic foil across entire landscapes (in Almeria, Spain) [105,106]. Yield and biodiversity potentials in certified organic
versus diversified conventional farming (E–H). In this scenario, the benefits of certified organic farming (F) consider only the
mandatory regulations for organic certification (largely waiving synthetic agrochemicals) and do not consider any potential di-
versification measures. In contrast, we consider diversification measures for conventional farming to illustrate their potentia
for enhancing biodiversity (H). However, diversification practices may also greatly benefit organic farming [57,107]. Yield is
reduced by 22% (19–25%) in organic farming, based on three meta-analyses [18], while yield in conventional farming may
be also reduced by 22% when setting aside 22% seminatural habitat [78,79]. In this scenario, conventional farming with
mixed cropping and small fields keeps the high (100%) yield level, but with higher biodiversity benefits than certified organic
farming alone. Landscape-wide expansion of organic farming may at least double biodiversity benefits [29], but landscape-
wide diversification of conventional cropland (mixed cropping, small fields) and 22% restoration of seminatural habitat leads
to altogether much higher biodiversity benefits [20,84]. (Photos E, G: Silvia Fusaro; study fields of Batary et al. [30]).
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Table 1. Biodiversity benefits through increasing heterogeneity at local and landscape scales, illustrated by
meta-analyses and syntheses showing quantified estimates

Measures Quantified findings Refs

Local and farm scale

Off-field vs in-field
measures

Measures at off-field areas, such as field margins and
hedgerows, are roughly twice as effective at enhancing
species richness as those aimed at in-field, such as
organic farming.

Three global meta-analyses
[46]

Crop diversity Biocontrol effect is 36% higher in organic polycultures
compared to organic monocultures

Global meta-analysis [98]

Crop diversity Diversification practices in cropping systems enhances
biodiversity by 40%, pollination by 32%, and pest control
by 23%, while yield remains on a similar level.

Review of 98 meta-analyses
[50]

Flower strips Number of sown plant species in flower strips is linearly
positively correlated with species richness of pollinators,
with around tenfold increased richness compared to
control strips

Meta-analysis of European
studies [99]

Nitrogen input Extensively managed fields (<30 kg N/ha/year) support
more than twice the species richness of intensively
managed fields (>200 kg N/ha/year)

Synthesis across six EU
countries [1,100]

Landscape scale

Field size Decrease from 6 to 1 ha per landscape means ~6 times
increase in species richness (7 taxa, 435 landscapes, 8
regions), which was as strong as the effect of increasing
seminatural cover from 0 to 35%. Reducing field size
from 5 to 2.8 ha is as effective as increasing seminatural
habitat from 0.5 to 11%.

Synthesis across eight regions
(Europe, North America)
[20,85]

Field border density Increasing field border density (m per ha) from 100 to 600
m enhances wild bee abundance fivefold.

Synthesis across four EU
countries [84]

Field perimeter Increasing field perimeter up to 6 km per landscape in
conventional (or organic) fields means increasing species
richness from 50 to 100 (or 60 to 130) in large-scale, but
to 150 (or 210) in small-scale landscapes, i.e., more
species in conventional small-scale than in organic
large-scale landscapes.

Covering 2 EU regions, 4 taxa
[30]

Crop diversity Increasing the number of crop types sampled can double
landscape-level multitrophic diversity, if the amount of
seminatural cover exceeds 11%

Synthesis across eight
regions (Europe, North
America) [20]

Crop diversity Doubling crop diversity results in ~6 times higher
pollinator (but not spider and carabid) diversity if the
landscape shares 30% seminatural habitat, and ~4 times
more if seminatural habitat is 10%

Synthesis of seven Swedish
studies [101]

Crop diversity High landscape crop diversity leads to 8–33% higher
biological aphid control, to tripling of bumblebee
densities, and to higher pollen diversity, linked to
threefold increase in bumblebee colony weight compared
to landscapes with low crop diversity

Three EU studies [88,93,102]

Landscape complexity Increasing percent seminatural habitat in the landscape
up to 40% doubles bee species richness and enhances
parasitism of rape pollen beetles tenfold, thereby halving
oilseed rape damage

Two EU studies [67,76]

Landscape complexity Natural enemy diversity is ~50% higher in complex than
simple landscapes

Meta-analysis [103]

Landscape complexity Landscape complexity enhances social bee richness by
>4 times, while solitary bee richness by ~50%.

Global synthesis [104]

Landscape complexity A simplification of the landscape from 2% to 100% of
cultivated land reduces the level of aphid control by 46%

Synthesis across Europe [73]
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Table 1. (continued)

Measures Quantified findings Refs

Landscape complexity In landscapes with high edge density, 70% of the
pollinator species and 44% of the natural enemy species
reach highest abundances, while pollination and pest
control improve 1.7-fold and 1.4-fold, respectively

Synthesis across Europe
[71]

Diversified farming
system and organic
farming

Diversified farming systems enhance local arthropod
richness by 23% (29% in complex, 11% in simple
landscapes) and organic farming by 18% (26% in
complex, 9% in simple landscapes), benefitting in
particular pollinators and predators

Global synthesis [5]
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of these effects needs further research. In Europe, maintaining landscape complexity with seminatural
habitats needs to consider the traditional, uneconomic agroecosystems that are threatened from ag-
ricultural intensification or abandonment, such as orchard meadows and dry grasslands [2,82,83].

Promoting landscape-wide cropland heterogeneity for biodiversity
Although increasing the amount of seminatural habitat in the landscape can mitigate biodiversity
loss, rising land prices make seminatural habitat an expensive good that is difficult to maintain,
yet alone to increase [10]. Consequently, the idea has gained momentum that raising landscape-
wide heterogeneity of the cropmosaic (i.e., cropland heterogeneity) may also exhibit major positive
effects on biodiversity, without compromising the availability of agricultural land [84,85] (Figure 1).

A recent study, based on 435 landscapes across eight regions, showed that increasing configu-
rational cropland heterogeneity by decreasing field size can be even as beneficial for multitrophic
diversity (plants, birds, bees, butterflies, carabid beetles, spiders, and syrphid flies) as increasing
seminatural habitat [20] (Figure 2F,G and Table 1) [20,85,86]. Reducing size of crop fields from 5
to 2.8 ha (or from 6 to 1 ha) enhanced as many species as increasing seminatural habitat from 0.5
to 11% (or from 0 to 35%). This was not just due to the increase in common grassy field margin
strips along crop fields, as there was also a positive effect of increasing crop edges per se. Higher
field edge densities can result in up to five times the number of wild bees and higher fruit set in an
agricultural landscape [84] and also reduces pest infestation [71,87,88]. These patterns have
been quantified in the mosaic landscapes of Europe, but the situation may be different in large-
scale regions with large fields and farms, for example, found in North America or Brazil [8].

Batáry et al. [30] found also high biodiversity benefits of small-scale over large-scale agriculture,
which are on par or even higher than the biodiversity benefits from converting conventional to or-
ganic agriculture (Figure 2D,E). Independent of field size, organic farming increased biodiversity,
but also halved cereal yield levels, compared to conventional farms [30]. However, profit per farm-
land area was 50% higher on 20-ha than 3-ha fields, due to the lower costs (e.g., working time) for
managing large fields [30]. The higher costs for managing small fields include also higher risks for
compacted soil, higher crop damage, and growth heterogeneity due to the increase of edges
and headland (where machines turn around) [85]. However, conversion to long, narrow fields can
minimise headland, while biodiversity enhancement is optimised through long margins [85], pro-
moting ecosystem services through spillover of crop pollinators aswell as predators and parasitoids
in temperate and tropical regions [71,89]. Furthermore, small fields allow better adaptation of crop
diversification to local heterogeneity, for example in soil quality [49], and may reduce the risk of pest
outbreaks, typical for large areas of monocultures [90–92]. Increasing the number of crop types had
also a positive effect on landscape-level biodiversity, but only in landscapes with >11% of seminat-
ural habitat [20]. Pest densities are typically lower in landscapes with higher crop diversity
[71,87,88], while monocultural, maize-dominated landscape are of little value for pollinators [93].
Trends in Ecology & Evolution, October 2021, Vol. 36, No. 10 925



Table 2. Major biodiversity-friendly measures on the local (field and farm) and landscape scale.
Photo: Tibor Hartel.
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• Diversify crops, consider resource continuity across the sea-
son [49,53,108]

• Restore semi-natural habitat (field boundaries, hedges,
ponds, trees) to increase land-use diversity [5,49,108]

• Maintain traditional, species-rich but uneconomic land-use
systems [2,82]

• Minimize pesticide use by synthetic and natural pesticides
[14,40,42,109]

• Improve yield with ecological intensification and new crop
varieties suitable for diversification [19,57,110,111,112]

• Stop overfertilization by organic and mineral fertilizers [43,113]

• Increase landscape complexity by restoring >20% of
semi-natural habitat [10,78,79]

• Prioritize restoration of simple landscapes [1,67,114]
• Spread habitat patches across landscapes to increase beta

diversity [68,79,115,116]
• Augment crop diversity per landscape while keeping >11%

semi-natural habitat [20,87]
• Certify crops when grown with landscape-wide biodiversity-

friendly measures [33]
• Reduce mean field size per landscape below 6 ha

[20,30,85]
• Increase length of semi-natural edge habitats (field margin

strips) per landscape [20,84]
• Promote collaboration of farmers with other stakeholders to

design biodiversity-friendly landscapes [8,97,117]

Trends in Ecology & Evolution

Outstanding questions
What is the best combination of
organic farming, field size, crop
diversification, and natural habitat to
restore biodiversity in agricultural
landscapes?

How do regionally adapted measures
for biodiversity-friendly landscapes dif-
fer between small-scale mosaic land-
scapes (e.g., most of Europe) and
large-scale landscapes (e.g., most of
USA)?

Are successful agri-environmental,
biodiversity-friendly schemes in the
Global North a prototype for the Global
South?

How can we incentivise switching to
small-scale and diversified farming
practices in a sustainable way?
Concluding remarks: biodiversity-friendly landscape measures
In conclusion, organic farming contributes more to biodiversity conservation than conventional ag-
riculture, but these benefits are small and come at the cost of high yield deficits (Figure 1). Crop di-
versification, small fields, and promotion of seminatural habitat patches can have greater effects on
biodiversity than organic certification [20,30]. These biodiversity-friendly measures can be applied
in both organic and conventional agriculture, thereby improving a larger area of the agricultural
landscapes. Even under the EU Green Deal goal to achieve 25% organic farming by 2030, there
is a need to target the 75%conventional agriculture shapingmost landscapes. Keeping and restor-
ing natural habitat in agricultural landscapes is not the only solution for higher landscape-wide bio-
diversity. Landscape-wide promotion of cropland heterogeneity can compensate for losses in
natural habitat, mainly through smaller fields but also by increasing the number of crop species.
Figure 2. Landscape-wide seminatural habitat (landscape complexity) and cropland heterogeneity (small fields
and high field edge density) is shaping local species richness. (A) Calcareous grassland embedded in annual cropland
(Photo: Verena Rösch). (B) Wild bee species visiting a standardised set of flowering herbs planted in grassy field margin strips
along wheat fields, increasing with percent seminatural habitats in the surrounding landscape [67]. (C) Standardised species
richness of nine plant and insect taxa on small calcareous grassland fragments in relation to percent arable land in the
surrounding agricultural landscape [7]. (D) Map showing the field-size differences between former West Germany (Lower
Saxony) and former East Germany (Thuringia) along the former Iron Curtain (red line). East Germany farms are ~20 ha, West
German farms ~3 ha [30]. (E) Effects of region (small-scale farming in the West and large-scale farming in the East of
Germany) and organic versus conventional management on accumulated species richness of plants, carabid beetles, spiders,
and rove beetles. Accumulated field perimeter (sample-based rarefaction curves standardized for perimeter per field; n = 36
fields; dashed lines represent 95% confidence intervals [30]). (F) Effects of field border density (i.e., configurational cropland het-
erogeneity) on wild bee abundance sampled in crop fields of four EU countries. Abundances are shown on a log10 scale [84].
(G) Effects of mean field size per landscape on the landscape-level species richness (standardised multidiversity) of seven tax-
onomic groups. Data from eight regions of Europe and Canada with altogether 435 fields [20].
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There is a need for improving landscape connectivity with habitat mosaics that are highly perme-
able for dispersing organisms across landscapes [9,94,95]. Functional landscape connectivity is
a major landscape feature [96], as common extinctions due to climatic extremes, disturbance, or
random extinctions and genetic drift in small populations [79] can only be countered by colonisa-
tion [95]. Connectivity between environmentally friendly managed and protected areas allows
spillover of populations, including ecosystem service providers, from habitat patches or field
boundaries to agroecosystems, but also to spared natural habitat remnants [9,10].

Incentives and regulations for biodiversity-friendly measures should come with a new focus on
cropland diversification (i.e., small fields, high edge density), which is more important than organic
farming for supporting biodiversity on farmland. Whereas current policies target local manage-
ment, futuremeasuresmust be broadened to the landscape level, with small-scale and diversified
agriculture embedded in at least 20% seminatural habitat. Optimising landscape design needs
governmental schemes as well as collaboration of farmers with other groups of stakeholders
[8,97]. Biodiversity conservation as part of multifunctional agricultural landscapes, balancing so-
cioeconomic and ecological goods, needs a realistic roadmap towards a much-needed para-
digm shift in agriculture (see Outstanding questions).
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