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Abstract: Plant biodiversity is an important feature of grassland ecosystems, as it is related to the
provision of many ecosystem services crucial for the human economy and well-being. Given the
importance of grasslands, research has been carried out in recent years on the potential to monitor
them with novel remote sensing techniques. In this study, the optical diversity (also called spectral
diversity) approach was adopted to check the potential of using high-resolution hyperspectral images
to estimate α-diversity in grassland ecosystems. In 2018 and 2019, grassland species composition
was surveyed and canopy hyperspectral data were acquired at two grassland sites: Monte Bondone
(IT-MBo; species-rich semi-natural grasslands) and an experimental farm of the University of Padova,
Legnaro, Padua, Italy (IT-PD; artificially established grassland plots with a species-poor mixture).
The relationship between biodiversity (species richness, Shannon’s, species evenness, and Simpson’s
indices) and optical diversity metrics (coefficient of variation-CV and standard deviation-SD) was not
consistent across the investigated grassland plant communities. Species richness could be estimated
by optical diversity metrics with an R = 0.87 at the IT-PD species-poor site. In the more complex
and species-rich grasslands at IT-MBo, the estimation of biodiversity indices was more difficult and
the optical diversity metrics failed to estimate biodiversity as accurately as in IT-PD probably due
to the higher number of species and the strong canopy spatial heterogeneity. Therefore, the results
of the study confirmed the ability of spectral proxies to detect grassland α-diversity in man-made
grassland ecosystems but highlighted the limitations of the spectral diversity approach to estimate
biodiversity when natural grasslands are observed. Nevertheless, at IT-MBo, the optical diversity
metric SD calculated from post-processed hyperspectral images and transformed spectra showed,
in the red part of the spectrum, a significant correlation (up to R = 0.56, p = 0.004) with biodiversity
indices. Spatial resampling highlighted that for the IT-PD sward the optimal optical pixel size was
1 cm, while for the IT-MBo natural grassland it was 1 mm. The random pixel extraction did not
improve the performance of the optical diversity metrics at both study sites. Further research is
needed to fully understand the links between α-diversity and spectral and biochemical heterogeneity
in complex heterogeneous ecosystems, and to assess whether the optical diversity approach can be
adopted at the spatial scale to detect β-diversity. Such insights will provide more robust information
on the mechanisms linking grassland diversity and optical heterogeneity.
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1. Introduction

Biodiversity and ecosystem functions are crucial in many different ways and pro-
vide several ecosystem services related to human well-being [1,2]. A minimum level of
biodiversity is needed for sustainable preservation to maintain ecosystem functions [3].
However, in the last decades, changes in human activities have modified the landscape in
many different regions of the planet. In the Alps, for example, such modifications have
accelerated biodiversity loss at unprecedented rates as in the last decades modifications
in society, tourism, and agricultural production have led to substantial land use changes
and a loss of landscape diversity, particularly for grassland ecosystems [4]. In this context,
to address the current decline in biodiversity, novel and efficient methods and tools are
required to monitor biodiversity across spatial scales from the leaf level to the canopy,
ecosystem, and global scales [5–7].

In recent years, improved detector technology and novel sensors providing fine-scale
hyperspectral imagery have enabled new methods to monitor ecosystem biodiversity
based on varying plant optical properties of different species or functional groups [6,8,9].
Novel imaging sensors for in-situ observations that are now commercially available [10]
have spectral and spatial resolution sufficient to identify plant species from their leaf
spectra [11,12]. Such sensors can also be used to investigate the links between optical
diversity and plant diversity across a range of different grassland ecosystems, from artificial
to natural. Optical diversity (also called spectral diversity) refers to the “variation in remote
sensing measurements, typically spectral reflectance, across sets of pixels and has been
proposed to relate to conventional metrics of biodiversity” [13]. Different plant species
respond in their own way to incoming solar radiation according to their pigment, water,
and biochemical content, as well as leaf and canopy structure. Thus, the variability in the
remotely sensed spectra might enable detection of plant species diversity [13–17]. This
concept represents the basis of the spectral variability hypothesis (SVH): as the number
of plant species increases for a given area, the spectral diversity observed from that area
should also increase [18,19]. In the literature, there are different methods developed by
the remote sensing community to quantify the spectral diversity and to relate it to α-
diversity. α-diversity is commonly measured by species richness (number of species in the
sampling area) or can be quantified with other heterogeneity measures, such as e.g., the
Shannon’s index [20], Simpson’s index [21], and species evenness [22], which measure the
even abundance between species and dominance of the species.

Several studies have tested the SVH in various ecosystems and at various spatial
scales (grasslands: [13,23–25]; forests: [26,27]; wetlands: [19]) and reported that spectral
diversity metrics can be used as a proxy of α-diversity. Spectral diversity metrics include
the coefficient of variation (CV) [13,28,29] and the standard deviation (SD) across the wave-
lengths [24], the mean distance of pixels from the spectral centroid [16], the convex hull area
of pixels in spectral feature space [28] and the spectral variance [30]. Schweiger et al. [15]
used spectral diversity based on the dissimilarity of 1000 randomly extracted vegetation
pixels per plant community from high-resolution proximal data to test the relationship
between spectral diversity and productivity. Many studies, however, were mostly focused
on artificially established (sown) plant communities with relatively low diversity, which are
very different in terms of structure from natural plant communities. Man-made ecosystems
cannot be considered as fully representative of the complexity of natural field ecological
conditions [15]. A review of the results achieved in previous studies with respect to herba-
ceous canopies and grassland types is summarized in Table 1. These studies reported a
positive correlation (up to R2 = 0.58) between spectral diversity metrics and α-diversity in
grassland ecosystems [13,14,24]. Aneece et al. [24] related spectral diversity (expressed as
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SD) with species diversity (Shannon–Weiner index) and evaluated correlations (R2 = 0.43)
across different spectral regions from visible (VIS) and near-infrared (NIR). In another
study, Wang et al. [13] used the average CV of spectral reflectance calculated over the
430–925 nm wavelength as an indicator of optical diversity and then compared the CV
values obtained at different spatial scales ranging from 1 mm to 1 m with α-diversity
metrics. Peng et al. [14] investigated a natural temperate grassland (with a maximum
species richness of 12 in a 0.8 m diameter plot), and reported that the maximum R2 value
of the correlation between optical diversity and α-diversity was 0.40.

Table 1. Summary of some of the previous studies using the optical diversity approach to estimate biodiversity.

Study Type of
Grasslands

Range of
Species Per

Plot
Plot Size Sensor Used Optical Diversity

Metrics
Biodiversity

Indices

Correlation
between
Optical

Diversity and
Biodiversity

Metrics

Aneece et al. [24]

Abandoned
areas, early
successional
stages with

exotic species
(US)

1 to 5
1 m2

(Footprint
diameter 1.15 m)

ASD Field
spectrometer

SD 1 of reflectance
(average across 590 to

674 nm)
Shannon’s R2 (0.37)

SD of CR 1 (average
across 590 to 674 nm) Shannon’s R2 (0.43)

SD of FD 1 of original
reflectance (average

across 925 to
1025 nm)

Shannon’s R2 (0.43)

Wang et al. [13]

Artificial
grassland with
native species

planted in Prairie
Ecosystem (US)

1 to 16 1 m2

Imaging
spectrometer

(mounted on a
tram)

CV 1 (average across
430 to 925 nm)

species richness R2 (0.47)
Shannon’s R2 (0.43)
Simpson’s R2 (0.58)

species evenness R2 (0.42)
PSV 1 R2 (0.00)
PSE 1 R2 (0.27)

Peng et al. [14]

Natural
temperate
grasslands

(China)

1 to 12
0.5 m2

(Footprint
diameter 0.8 m)

ASD FieldSpec2
spectrometer SVIs 1 (FD583) species richness R2 (0.40)

Present study
Experimental

golf turf
grassland plots

1 to 9 0.0625 m2

0.25 m2

Imaging
spectrometer

(mounted on a
tripod)

CV, SD (average at
different spectral

regions, across the
spectrum, and at each

spectral band)

species richness In discussion

Present study Subalpine
grasslands 2 to 17 0.0625 m2

Imaging
spectrometer

(mounted on a
tripod)

CV, SD (average at
different spectral

regions, across the
spectrum, and at each

spectral band)

species richness,
Shannon’s,

species evenness,
Simpson’s

In discussion

1 SD: standard deviation, CR: continuum removed, FD: first derivative, CV: coefficient of variation, PSV: phylogenetic species variability,
PSE: phylogenetic species evenness, SVIs: spectral vegetation indices.

The relationship between spectral diversity and biodiversity demonstrated to be not
consistent across plant communities. For example, Lucas and Carter [31] investigated the
link between spectral diversity metrics (expressed in terms of CV) and species richness
and revealed contradictory relationships between spectral α-diversity and species rich-
ness in meadows of Horn Island (Mississippi, USA). The accuracy of the species diversity
estimation varied with the spectral data acquisition and with the level of complexity of
the community. Spatially heterogeneous canopy structure has a greater possibility to
create heterogeneous shadow patterns. Heterogeneous canopy shadow patterns modify
optical diversity patterns, which are influenced not only by plant diversity but also by
shadow rates. Additionally, phenology status shifts among different species may lead to
major structural differences in terms of different rates and different spatial distribution
of non-photosynthetic elements (e.g., flowers, dead material [32,33]). This heterogeneity
may create a further shift between optical diversity metrics and the measured biodiver-
sity metrics; as a result, the accuracy of the estimation of biodiversity metrics can be
reduced [14].

Uncertainties in the remote estimation of canopy biodiversity also exists because
species richness is an aggregated measure of diversity that does not take explicitly into
account either canopy structure or composition, the two main vegetation properties that
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are more easily captured by remotely sensed data [34]. With the advancement of proximal
sensors technology and the use of very-high spatial resolution (up to 1 mm) imagery [10],
new opportunities arise, although some new challenges need to be considered. Ideally,
the pixel size should be smaller than the sampling unit, especially when estimating α-
diversity by using the spectral diversity approach [35]. However, at the same time, a few
authors highlighted the drawback of very-high spatial resolution imagery and state that a
finer scale increases the spectral variability caused by canopy non-photosynthetic elements
(flowers and dead material), shadowed pixels, and overexposed pixels, which often hamper
the separability of the individual plant species in pixel-based studies [13,28,36]. Similarly,
Nagendra [34] stressed the downside of very-high spatial resolution, which can be excessive
in respect to the objects being represented, contributing to the variability in optical patterns,
and a reduction in the accuracy in classification studies [37]. In the optical diversity context,
Rocchini et al. [35] stated that when very-high spatial resolution is used to monitor the
species diversity, the shadowed pixels may create a higher spatial heterogeneity among the
spectra, which leads to noise rather than enhancing the information content.

The aforementioned studies on grasslands [13,14,24] were focused on relatively low-
diversity or artificially established plant communities which are very different in terms of
structure and complexity from the natural grassland plant communities. The studies on
grassland biodiversity are often carried out at small scale using a “within-site” approach
to keep environmental conditions among treatments as much constant as possible [38]
and are often based on manipulation of species richness. In this regard, Grace et al. [39]
highlighted the limits of manipulation experiments in ecological studies and the need for
more analyses focused on mature natural ecosystems.

The present study examined the possibility to use variability in vegetation optical
properties to assess species diversity in grassland ecosystems using very high spatial
resolution hyperspectral data. Spectral diversity has been quantified through the analysis
of the CV ([13,23,40]) and the SD ([14,24,41]) of the original and transformed hyperspectral
reflectance. We conducted two sets of experiments in two different grasslands with different
origin and different diversity levels. The first ecosystem was a turfgrass established
artificially by seeding a limited number of species (1–9 species in 2 × 2 m plots), while
the second was a subalpine semi-natural grassland characterized by high diversity (up to
17 species in a 0.25 × 0.25 m plot).

Specific field campaigns were carried out to test the following research questions:

(1) Is there a relationship between plant α-diversity and spectral diversity proxies ob-
tained using high spatial and spectral resolution imagery? Can this relationship be
observed both in the species-poor turf grassland and in the subalpine semi-natural
grassland characterized by high biodiversity and heterogeneous canopy structure?

(2) What is the impact of processing methods, such as filtering and spectral transfor-
mations, on the correlations between grassland spectral diversity and biodiversity
metrics?

(3) What is the impact of the spatial sampling scale and random pixel extraction on the
relationship between grassland optical diversity and biodiversity metrics?

2. Materials and Methods
2.1. Study Area

The dataset used in this study was collected at two grassland sites characterized by
different structure, species composition, and origin (Supplementary Materials, Figure S1).
The first site was a turf grassland (Figure 1) located on the Experimental Farm of the
University of Padova, in Legnaro, Italy (45◦21′ N, 11◦58′ E; 6 m a.s.al., IT-PD), where
plots of varying species richness (ranging from 1 to 9) were established in September 2018
by seeding. The established plots were arranged in a square (2 × 2 m) design and were
managed by removing weeds and mowed with a rotary mower machine at approximately
4.7 mm every other week. Subplots with dimensions of 0.25 × 0.25 m and 0.5 × 0.5 m
were chosen within the 2 × 2 m square plots for the spectral and biodiversity analysis.
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The species composition of the investigated plots at IT-PD is summarized in Table S1 in
Supplementary Materials.

Figure 1. (A) Location of the sample plots in both study areas (IT-PD and IT-MBo). (B) The IT-PD plots (n = 9) are located
at the experimental farm of the University of Padova (Legnaro, Italy). (C) IT-MBo plots (n = 25) are located in the natural
grassland ecosystem in the Italian Alps (Monte Bondone, Trento, Italy). RGB images of selected plots of both study sites are
shown on the right.

The second site was a permanent semi-natural grassland (Figure 1) situated in the
Italian subalpine vegetation belt at Viote del Monte Bondone, Trentino province, Italy
(46◦00′ N, 11◦01′ E; 1480–1550 m a.s.al., IT-MBo). The grassland area lies on a plateau,
and it is managed extensively as a meadow with low mineral fertilization. It is cut once
a year around mid-July at the green biomass peak time, and it is characterized by very
high plant diversity [42]. Several different vegetation types can be found in the area
with extremely varying canopy structure and biomass [43,44]. The Sieverso-Nardetum
strictae association covers a high portion of the plateau characterized by short canopies.
The Scorzonero Aristatae-Agrostidetum tenuis association canopy is generally taller, and
it grows on calcareous soils. The latter association includes more productive species,
and it can be found in the most fertile and well-exposed areas of the plateau [43]. The
species composition of the 25 investigated plots (0.25 × 0.25 m) of the IT-MBo plateau is
summarized in Table S2 in Supplementary Materials.

The methodological flowchart of the study is shown in Figure 2. In the following
sections, each step is described in detail.

2.2. Biodiversity

To collect the floristic information, vegetation surveys were carried out by a trained
person within the study areas. At the IT-PD site, the species number was counted after
identification of all species within the ROI (0.25 × 0.25 m and 0.5 × 0.5 m). At the IT-MBo
site, the species composition was determined by listing all plant species within the ROI
(0.25 × 0.25 m) and visually estimating their percent cover [45]. Species percent cover
information was used to calculate the following biodiversity indices: species richness
(S), Shannon’s index (H’), Simpson’s index (D), and species evenness (J, calculated as
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Pielou’s index). The details regarding the biodiversity indices are reported in Table 2. All
biodiversity indices were calculated using the ‘vegan’ R package [46].

Figure 2. Flowchart representing the data processing approach used in this study. See Section 2.4 for
details on the different levels of processing.

Table 2. Biodiversity metrics used in this study. pi is the proportion of the species i.

Biodiversity Metrics Formula Reference

species richness (S) S = number of species [47]

Shannon’s index (H′) H′ = −
S
∑

i=1
pi ln(pi) [20]

species evenness (J) J = H′/ ln (S) [22]

Simpson’s index (D) D = 1−
S
∑

i=1
p2

i
[21]

2.3. Spectral Data Acquisition

At the IT-PD site, the hyperspectral data of the nine plots were collected in the
summer of 2019 by means of a SPECIM IQ hyperspectral camera (SPECIM Ltd., Finland).
The spatial sampling of the camera is 512 pixels per line and the spectral resolution
is 7 nm, with 204 bands across the VIS (397 nm–700 nm) and NIR (700 nm–1003 nm)
spectral range. The hyperspectral camera was mounted on a tripod and two nadir images
were collected at approximately 1 and 2 m from the ground (with an image footprint of
approximately 0.55 × 0.55 m and 1.1 × 1.1 m, respectively). The images were acquired
using the simultaneous mode (the white reference panel was recorded simultaneously with
the targeted vegetation). For both study sites, the spectral data were acquired between 11:00
and 14:00 local time under clear sky conditions. To record the images, an integration time
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of 1 ms was used, which provided a weak signal, but ensured non-saturated images. The
SPECIM IQ did not allow the acquisition of non-saturated images with higher integration
time under clear sky conditions. The ROIs (0.25 × 0.25 m and 0.5 × 0.5 m) of the IT-
PD images were extracted and used for post-processing and spectral diversity metrics
calculations. The distance from the canopy was approximately 1 m for IT-PD and 0.7 m
for IT-MBo site. Although the distance between the canopy and the camera was kept as
constant as possible, the number of pixels within the ROIs was not exactly the same due to
slight variation in canopy height. In the IT-PD plots, the average number of pixels per ROI
was 64,260 pixels, with an average pixel size of 1 mm (pixel size: min, 0.95 mm and max,
1.02 mm) and 10,8240 pixels with an average pixel size of 1.5 mm (pixel size: min. 1.48 mm
and max. 1.56 mm) within the ROIs of 0.25 × 0.25 m and 0.5 × 0.5 m, respectively.

At the IT-MBo site, we selected 30 randomly distributed plots with species richness
ranging from 2 to 17. In the summer of 2018, at the biomass peak time, we collected canopy
level spectral data using the same SPECIM IQ camera. The canopy height at IT-MBo was
not consistent between the plots (varied from 0.3 to 1.2 m); therefore, the hyperspectral
images were collected approximately 0.7 m from the canopy level to capture a squared
footprint of approximately 0.55 × 0.55 m. A 0.25 × 0.25 m frame was placed within each
image footprint to define the ROIs used for post-processing and spectral diversity metrics
calculations. The average number of pixels within the IT-MBo ROIs was 84,100 with an
average pixel size of 0.9 mm (pixel size: min, 0.70 mm and max, 1.48 mm). All the 30 plots
images were visually evaluated to remove any blurred (because of moving leaves due to
windy conditions) and out of focus images. Finally, 5 plots were discarded after the quality
check of the hyperspectral images and 25 plots were kept for further analysis.

2.4. Pre- and Post-Processing

ROIs were extracted from the image using the ENVI (version 4.8) software. For
further processing, we used the open-source statistical software R [48]. The pre- and
post-processing of the hyperspectral data were categorized into four processing levels.
In Level0, corresponding to processing of the raw spectral data, the bands 397–411 and
930–1003 nm were removed to avoid the use of noisy data which were detected in these
spectral regions [10]. To further reduce the noise in the spectral signature, a Savitzky–Golay
smoothing filter [49] was applied using a 25-band window width.

The brightness of the spectra may be affected by heterogeneous illumination, leaf
volume, or subpixel shade [50]. For Level1 processing, we applied brightness normal-
ization [50] to all the images and then calculated the optical diversity metrics from the
brightness normalized images.

For Level2 processing, we applied specific filters to remove bright pixels from the
images, alongside pixels containing flowers, shadows, and soil background, as they are not
linked to plant biodiversity. We used the red band (680 nm) to remove shadowed pixels [51],
and the thresholds were defined by visual interpretation. Pixels with red band reflectance
below the first quartile were found to be suitable for obtaining a reliable separation between
shaded and sunlit pixels for the investigated plots. To filter the flower pixels, we used the
red-green normalized difference vegetation index (NDVIrg) based on the red and green
bands (640 and 551 nm, respectively). Pixels with an NDVIrg value higher or equal to the
visually selected threshold of 0.1 were excluded [52]. Furthermore, to remove the bright
pixels in the images due to hot spots at the leaf level, we used the NIR band (865 nm)
and selected a threshold value (>third quartile) to filter out the over-illuminated pixels.
To remove dead leaves pixels, we used a normalized difference vegetation index (NDVI)
mask (≤0.7) for all of the images. For Level2 processing, about 46% for IT-PD and 54% for
IT-MBo of the pixels from the total number of pixels within the ROIs were classified as
shadows, flowers, dead leaves, and bright pixels and were filtered out.
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To normalize the spectral features and reduce noise, spectral vegetation indices are
commonly used to remotely evaluate vegetation covers both quantitatively and quali-
tatively [53]. In some cases, transformed (continuum-removed—CR) spectra is used to
normalize reflectance data [24]. To further improve the quality of the images for Level3
processing, we, therefore, calculated the CR spectra from the Level2-processed data.

2.5. Calculation of Optical Diversity Metrics

As an indicator of the optical diversity of each plot, we used two spectral diversity
metrics: the CV (i.e., ratio of the standard deviation to the mean, [13,41]) and the SD
calculated as the average across the spectrum [13] from the Level0-processed data using
the following equations:

CVimage =
∑930

λ=411

(
std (ρλ)

mean (ρλ)

)
number o f bands

(1)

SDimage =
∑930

λ=411(std (ρλ))

number o f bands
(2)

where ρλ represents the reflectance value at wavelength λ and std (ρλ) and mean (ρλ)
indicate the standard deviation and mean value of the reflectance at wavelength λ, respec-
tively. The average CV and SD were also calculated considering different spectral regions
(408–499 nm, 500–589 nm, 590–674 nm, 675–754 nm, and 755–930 nm) as in Aneece et al. [24]
from the Level0-processed data. We also calculated the CV and SD for each spectral band
using Equations (3) and (4) from the original images and for each of the post-processing
levels (Level0 processing, Level1 processing, Level2 processing, and Level3 processing)
described in Section 2.4:

CVimage (λ) =
std (ρλ)

mean (ρλ)
(3)

SDimage (λ) = std (ρλ) (4)

where ρλ represents the reflectance value at the wavelength λ and std (ρλ) and mean (ρλ)
indicate the standard deviation and mean value of the reflectance at the wavelength λ,
respectively. The CV and SD calculated from the fully transformed Level3 reflectance
(brightness normalized, filtered, and CR) are shown in Figure 3 (IT-PD CV: E and IT-PD
SD: F) and Figure 4 (IT-MBo CV: E and IT-MBo SD: F).

The effects of pixel resolution and random pixel extraction on the relationship between
optical diversity and biodiversity indices were tested at both sites. To study the impact of
spatial resolution, the original data were resampled using the nearest neighbor algorithm
to different spatial resolutions (1 mm, 2.5 mm, 5 mm, 1 cm, 2.5 cm, 5 cm, and 8.3 cm),
processed with Level3 processing, and then the obtained pixels (approximately 54% of the
pixels for IT-PD and 46% for IT-MBo) were used to calculate the optical diversity metrics at
each resolution. Finally, to evaluate the sample size effects on the relationships between
optical diversity and biodiversity indices, a varying number of pixels (50, 100, 150, 250, 300,
and 500) were randomly extracted from the Level3-processed data. Pixel random extraction
was re-iterated 10 times and the optical diversity metrics were calculated at each extraction,
and the 10 R values of the correlations between biodiversity and optical diversity metrics
were averaged.
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Figure 3. Mean reflectance spectra of nine plots located at the IT-PD site: (A) Original reflectance; (B) Brightness normalized
reflectance; (C) Brightness normalized and filtered reflectance; (D) Brightness normalized, filtered, and continuum removed
spectra; (E) Coefficient of variation; (F) Standard deviation. In panels (A–F), a solid line represents the mean reflectance
obtained from 0.25 × 0.25 m ROIs with a pixel size of 1 mm and a dashed line represents reflectance from 0.25 × 0.25 m
ROIs with a pixel size of 1.5 mm.

Figure 4. Mean reflectance spectra of 25 plots located at the IT-MBo site obtained from 0.25 × 0.25 m ROIs: (A) Original
reflectance; (B) Brightness normalized reflectance; (C) Brightness normalized and filtered reflectance; (D) Brightness
normalized, filtered, and continuum removed spectra; (E) Coefficient of variation; (F) Standard deviation.
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2.6. Statistical Analysis

The Pearson correlation coefficient (R) and the corresponding p values between the
optical diversity metrics (CV and SD) and the biodiversity indices (species richness, Shan-
non’s index, Simpson’s index, and species evenness) of the surveyed plots were calculated
with the “cor.test” function in the “stats” package separately for the two grassland sites.
Calculations were done for both the original and transformed reflectance data. Normality
of the data and residuals of the correlation between the best correlated optical diversity
metrics and the field-measured species richness was checked with a Shapiro–Wilk test
using the “shapiro.test” function in the “stats” package. The analyses were performed with
the statistical software R (version 3.6.1) [48].

3. Results

In Figures 3 and 4, the mean original reflectance (panel A), mean transformed re-
flectance (panels B–D), and the spectral diversity metrics (CV and SD, panels E and F,
respectively) from each plot are presented with respect to the plot species richness at both
study sites.

The original mean reflectance values of the different plots showed some variability,
especially in the NIR domain, at both study sites (Figures 3A and 4A). Reflectance values
and spectral variability among the plots was reduced when brightness normalization
was applied to the hyperspectral image (Figures 3B and 4B). Additionally, the variability
was slightly reduced when a filter was used to remove flowers, shadows, and bright
pixels from the images C and Figure 4C). The CR spectra calculated from the brightness
normalized and filtered images also showed low variability in the spectra, at both study
sites (Figures 3D and 4D).

At the IT-PD site, the mean original reflectance obtained from the 1 mm pixel size
data (solid line, Figure 3A) was higher compared to the mean reflectance from the 1.5 mm
pixel size data (dashed line, Figure 3A). There was not much difference observed between
the mean spectra from the two different spatial resolutions (1 and 1.5 mm) at different
processing stages (Figure 3B–D). In general, the reflectance increased with the increase of
species richness from 1 to 4 and then it started to decrease (Figure 3A). On the other hand,
at the IT-MBo, a clear link of the reflectance values with species richness was not noted
(Figure 4A).

The optical diversity measured by the CV from the Level3-processed data showed
that the spectral variability in the reflectance within plots was particularly high in the VIS
part of the spectrum, while the variability in the NIR spectral region was low (Figure 3E).
In general, the highest CV values were observed in the plots where four species were
observed, while the lowest CV values in the plots with three species (Figure 3E). Therefore,
no manifest association with plant biodiversity was observed. The SD showed three peaks
in the blue, green, and red-edge spectral domains, and the lowest SD was detected around
680 nm (Figure 3F).

The lack of relationship between the spectral diversity across the spectrum (CV and SD)
and species richness was particularly pronounced at the IT-MBo site (Figure 4). Similarly to
the IT-PD site, the CV at the IT-MBo site showed that variability was observed mainly in the
VIS part of the spectrum, while the NIR spectral region was characterized by low variability
(Figure 4E). The SD at IT-MBo showed three peaks across the spectrum (Figure 4F). As
in the IT-PD dataset, the highest values of SD were found around the blue, green, and
red-edge part of the spectrum, while the lowest SD was detected around 680 nm at the
IT-MBo site (Figure 4F).

In this study, the performance of spectral diversity to estimate plant diversity was
not consistent across the spatial scale, over different grassland ecosystems, and across
different spectral regions. For the IT-PD site, the Pearson correlation analysis revealed
positive correlations between optical diversity metrics (calculated from the Level0 data and
averaged across the spectrum) and species diversity except for the SD metric calculated
from 1.5 mm pixel size data, which showed almost no correlation in the NIR part of the
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spectrum (Appendix A, Figure A1). For both datasets, the CV in different spectral regions
showed higher R values compared to the SD metric in the VIS and red-edge part of the
spectrum. On the other hand, in the NIR spectral region, both metrics showed weak
correlations (1 mm: CV: R = 0.23, p = 0.56, SD: R = 0.25, p = 0.51; 1.5 mm: CV: R = 0.13,
p = 0.73, SD: R = −0.01, p = 0.98). At the IT-PD site, generally weak correlations were
observed between the CV calculated across the spectrum and species richness (1 mm:
R = 0.52, p = 0.15; 1.5 mm: R = 0.62, p = 0.08), while the SD metric showed lower R values
(1 mm: R = 0.31, p = 0.41; 1.5 mm: R = 0.21, p = 0.59) for both datasets. For the IT-MBo
site, the spectral diversity metrics showed contrasting results with pervious work [13,24],
highlighting a weak correlation between optical diversity and biodiversity indices. The
correlations obtained between optical diversity metrics calculated from the Level0 data
averaged across the spectral regions and within different spectral regions showed almost
no correlation with species richness, although a weak positive correlation for CV and
SD averaged in the 408–499 nm spectral region was recorded (Appendix A, Figure A2,
panel A). For other biodiversity indices (Shannon’s index, species evenness, and Simpson’s
index) both optical diversity metrics (calculated from the Level0-processed data) mostly
showed an inverse correlation both when the CV and SD were averaged within different
spectral regions and when it was averaged across the VIS-NIR spectral region (Appendix A,
Figure A2, panels B,D).

In a further step, to check the impact of image processing on the metrics performance,
we calculated the CV and the SD for each spectral band from both untransformed (Level0)
and transformed (Level1, Level2, and Level3) reflectance. We examined the correlations
across the spectrum between species richness and both the CV and SD optical diversity
metrics and we found high R values for both spatial scales: up to R = 0.83 (CV) and R = 0.84
(SD) and R = 0.87 (CV) and R = 0.86 (SD) for 1 and 1.5 mm pixel size, respectively (Figure 5).
We observed that the CV and SD calculated from transformed reflectance showed, in
general, higher R values compared to untransformed reflectance. For the 1 mm pixel size
image, the correlations between species richness and the CV and SD metrics calculated
from the transformed reflectance were mostly positive in the VIS and negative in the NIR
(Figure 5). The maximum R values and their respective wavelengths for both datasets
(1 mm and 1.5 mm) and various processing levels are reported in Table S3.

Figure 5. Correlation coefficient from the Pearson correlation analysis (R) between optical diversity expressed as CV and SD
for each wavelength from 411 to 930 nm and species richness at the IT-PD site: ( (A): 1 mm pixel size; (B): 1.5 mm pixel size),
considering different processing levels.
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At the IT-MBo site, the shape of the R values curve was very different compared to
the IT-PD site (Figure 6). Additionally, lower R values were occurring across the spectrum,
with a small spike in the wavelengths around 680 nm for the SD calculated from Level2
and Level3 transformed reflectance. Similar trends were noted for R curves for all the in-
vestigated biodiversity indices (Figure 6A–D). The maximum R values and their respective
wavelengths and various processing levels at IT-MBo are reported in Table S4.

Figure 6. Correlation coefficient from the Pearson correlation analysis (R) between optical diversity expressed as CV and SD
for each wavelength from 411 to 930 nm and biodiversity indices at the IT-MBo site: (A) species richness; (B) Shannon’s
index; (C) species evenness index; (D) Simpson’s index, considering different processing levels.

3.1. The Impact of Spatial Resolution on the Spectral Diversity–Biodiversity Relationships

To study the scale effects, we investigated the relationships between optical diversity
and biodiversity metrics at decreasing spatial resolutions (1 mm, 2.5 mm, 5 mm, 1 cm,
2.5 cm, 5 cm, and 8.3 cm) by resampling the original spectral data (Figure 7). For the
IT-PD site, in the VIS part of the spectrum a strong relationship between optical diversity
metrics and species richness with an R value (R > 0.5) was recorded when pixel size was
reduced up to 1 cm, while with a larger pixel size (>2.5 cm), the R values started to decrease,
reaching a value of −0.15 when the pixel size increased up to 8.3 cm (Figure 7). In the NIR
part of the spectrum, a strong inverse correlation was obtained when the CV and the SD
were calculated from 1 cm resampled data. The strength of the inverse correlation started
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to weaken when pixel size increased and the weakest correlation was noted with 8.3 cm
pixel size data (R = −0.3). The maximum R values and their respective wavelengths across
different spatial resolutions for the IT-PD site are summarized in Table S5.

Figure 7. Correlation coefficient from the Pearson correlation analysis (R) at the IT-PD site between
optical diversity expressed as CV and SD for each wavelength from 411 to 930 nm at different spatial
scales and species richness.

In Figure 8, we considered the effect of pixel downsampling at the IT-MBo site. A clear
difference in R values was observed between the two optical diversity metrics: around
680 nm, the SD showed a stronger correlation compared to the CV when the spatial
resolution was reduced up to 5 cm, while for 8.3 cm, both metrics showed a weak inverse
correlation with biodiversity indices around the same wavelengths. For the SD metric, the
effect of pixel downsampling was noticeable when the pixel size went beyond 2.5 mm,
as the maximum R value around 680 nm dropped from 0.48 to 0.12, 0.55 to 0.02, 0.54 to
0.01, and 0.39 to −0.16 for the species richness, Shannon’s index, species evenness, and
Simpson’s index, respectively. In general, a similar pattern of R values was observed for
all biodiversity indices, where the CV mostly showed an inverse correlation particularly
around 550 nm, and the strength of the correlation increased with increasing pixel sizes
up to 2.5 cm. On the other hand, for lower spatial resolutions (>2.5 cm), the strength of
the correlation weakened, and for 8.3 cm, the weakest correlation was observed at the
same wavelength. Similarly, at RE spectral bands (around 720 nm), the effect of decreasing
spatial resolution could be noticed as the inverse correlation became stronger at increasing
pixel sizes up to 5 cm.



Remote Sens. 2021, 13, 2649 14 of 23

Figure 8. Correlation coefficient from the Pearson correlation analysis (R) between the optical diversity expressed as CV and
SD for each wavelength from 411 to 930 nm at different spatial scales and biodiversity indices at the IT-MBo site: (A) species
richness; (B) Shannon’s index; (C) species evenness; (D) Simpson’s index.

3.2. The Impact of Pixel Subsampling on the Spectral Diversity–Biodiversity Relationships

In Figure 9, we present the results achieved by using the subsampling approach
presented by Schweiger et al. [15] to calculate the optical diversity. For the IT-PD plots,
subsampling by random pixel extraction generally did not cause any major changes in the
R patterns across the spectrum, except for the NIR region, in which subsampling based
on 50, 100, 250, and 300 pixels resulted in a noticeable reduction in the R values (Figure 9).
Nevertheless, positive R values were observed in the VIS part of the spectrum, while mostly
negative R values were observed in the NIR spectral bands.
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Figure 9. Correlation coefficient from the Pearson correlation analysis (R) between optical diversity
expressed as CV and SD for each wavelength from 411 to 930 nm and species richness at the IT-PD
site considering different numbers of pixels.

Similarly, for the IT-MBo site, there were generally no considerable improvements in
the correlation coefficient between the optical diversity metrics calculated using randomly
extracted subsample pixels and biodiversity indices compared to the results found between
the same metrics when considering all pixels (Figure 10). In general, the SD metric showed
stronger relationships with biodiversity indices compared to the CV metric. The highest
R value (R ≥ 0.5) was observed around 680 nm when 250 pixels were used to calculate
the SD for all biodiversity indices, while for the CV around the same wavelength, very
low R values (R ≤ 0.09) were obtained (Figure 10A–D). For the IT-MBo site, the strongest
relationship was observed between the Simpson’s index and the SD metric calculated with
250 pixels at 685 nm (R = 0.62, p = 0.001, Figure 10D).

4. Discussion

Similarly to other authors [13,14,24], our study found a significant relationship be-
tween spectral diversity (expressed as CV and SD) and species diversity in the lower-
diversity artificial grassland site. However, the data acquired at the semi-natural subalpine
grassland at IT-MBo with the same methodology and analyzed with the same approach
provided much weaker correlations. Such results may be due to the very high level of
biodiversity (up to 17 species in a 0.25 × 0.25 m plot) and to the rather complex structure of
the IT-MBo grasslands [44] compared to the low-diversity turf canopy at the IT-PD site. Our
main findings questioned the applicability of the optical diversity method to estimate bio-
diversity in highly diverse grasslands, such as the ones at the IT-MBo site. Despite the fact
that we used several different processing techniques to enhance the optical diversity signal,
for the subalpine grassland site of IT-MBo, we were not able to match the performance of
optical-based methods to estimate the biodiversity reported in other studies [13,14,24]. In
Aneece et al. [24], an artificial ecosystem (with max. 5 species/m2) was investigated, and
the maximum R2 value of the correlation between the optical diversity and α-diversity was
0.43. Wang et al. [13] carried out on an artificial grassland (max. 16 species/m2), in which
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the maximum R2 value reached 0.58, while in the study of Peng et al. [14], which focused
on natural grasslands (with a maximum species richness of 12 in a 0.8 m diameter plot),
the maximum R2 value reached 0.40.

Figure 10. Correlation coefficient from the Pearson correlation analysis (R) between optical diversity expressed as CV
and SD for each wavelength from 411 to 930 nm and biodiversity indices at the IT-MBo site: (A) species richness index;
(B) Shannon’s index; (C) species evenness; (D) Simpson’s index, considering different number of pixels.

In our study, when optical diversity metrics were averaged across different spectral
regions as in Aneece et al. [24] and across the spectrum as in Wang et al. [13], we found
contradictory results at the two sites. At the IT-PD site, a positive correlation between
optical diversity metrics and biodiversity indices was mostly observed, while at the IT-MBo
site, the correlation was mostly negative (IT-PD and IT-MBo; Appendix A, Figure A1, panels
A, B and Figure A2, panels A–D, respectively). When the CV and the SD were calculated
for each spectral band on a separate basis, the R reached much higher values: 0.84 (SD
metric at 927 nm) and 0.87 (CV metric at 412 nm) in the artificial turfgrass (maximum
number of species was 9 in a 0.25 × 0.25 m and 0.5 × 0.5 m area). The maximum R value in
the species-rich subalpine grassland was only 0.56 for the SD metric at 688 nm (maximum
number of species was 17 in a 0.25 × 0.25 m area, Figure 6, panel C). Considering these
results, we may conclude that the optical diversity approach appears more suitable for
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lower-diversity or artificial systems, and its application may be more challenging in highly
diverse grasslands.

The applicability of the methods to estimate species diversity using hyperspectral
data was also questioned by other authors [28,31]. In these studies, the relationships
between species diversity and optical diversity metrics were not consistent across plant
communities. Lucas and Carter [31] evaluated the prediction of species diversity (species
richness) in Horn Island, Mississippi by using ground transect data and remotely sensed
data. However, they failed to find a significant relationship between spectral diversity
metrics and species richness, which may be due to the fact that their study considered
highly diverse habitat types. Gholizadeh et al. [28] investigated the SVH-based approaches
to access the α-diversity in Cedar Creek Ecosystem Science Reserve in Central Minnesota,
USA and highlighted the effect of soil background on the performance of optical diversity
metrics. The authors achieved significant correlations between spectral diversity metrics
and the species richness when they applied an NDVI filter to remove the soil background
from the hyperspectral image. In our study, however, the impact of soil was minimal, as
the fractional cover of the vast majority of the plots was 100% (it was lower than 100%
in only eight plots, but always higher than 99.5%). Wang et al. [13] provided significant
and detailed insights on the possible factors affecting the optical diversity and biodiversity
relationships, highlighting the fact that canopy structure effects can determine substantial
illumination and scattering differences and both leaf traits and canopy structure strongly
influence optical diversity metrics. As a consequence of the fact that canopy structure can
influence the optical diversity and modify the optical diversity–plant diversity relation-
ships, we can expect that in heterogeneous grasslands characterized by complex structural
patterns and by a very high number of species, biodiversity estimations based on optical
diversity are not always reliable.

In this work, we adopted a range of techniques to fully disentangle the optical diversity
due to plant diversity from the optical diversity due to illumination artifacts, or due to
the presence of pixels of non-photosynthetic material, such as dead material or flowers.
The results of this paper highlight the impact of image processing techniques on the
relationships between optical data and grassland diversity. The developed processing
flow proved, in general, to slightly improve the remote estimations of plant diversity,
by limiting the influence of the factors determining optical diversity but not related to
plant diversity. As shown by other authors, spectral diversity is affected by canopy non-
photosynthetic elements, such as flowers and, dead material, as well as by shaded pixels,
overexposed pixels, and the soil background [13,14,28,36]. To normalize the effect of
shadows, Feilhauer et al. [50] proposed the brightness normalization approach to minimize
the spectral differences between the sunlit and shaded areas. In the present study, we
observed that after applying brightness normalization to the hyperspectral images, the
reflectance variability in the NIR was strongly reduced. In our case, the performance of the
models to estimate grassland biodiversity did not significantly improve compared to the
original dataset when this transformation method was used alone. However, the filtering
of flowers, shadows, and bright pixels and then the transformation of the reflectance to
CR minimized the spectral differences, which were not linked to species diversity and
improved the diversity estimations. Heumann et al. [19] studied the impact that flowers
have on spectral diversity and investigated how this may influence the applicability of the
spectral diversity hypothesis. These authors reported that the inclusion of flower spectra
increased the normalized root mean square error (nRMSE) by 30% for Shannon’s diversity
index, because there would be more inherent spectral diversity for each given species due
to the spectral response difference between leaves and flowers.

The optical diversity–plant diversity relationships appeared to be both ecosystem-
dependent and scale-dependent. Spatial scale was shown to strongly affect the spectral
diversity–biodiversity relationships. In the study of Wang et al. [13], with decreasing
spatial resolution, the variability in reflectance and, therefore, CV and SD decreased, and
the optical detectability of biodiversity was reduced. In our study, however, the correlation
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between optical diversity metrics and species richness initially increased and was only
reduced when the pixel size was beyond 2.5 cm in IT-PD, even if for most of the species
the average leaf size was much lower than this value. For IT-MBo, the optimal pixel size
(at 680 nm) was 1 mm. Conversely, according to Wang et al. [13] the optimal pixel size to
detect species diversity using spectral diversity should match the size of the objects within
the sampling unit.

Another key finding of this paper concerns the impact of processing methods on the
performance of the optical diversity approach. When we compared the performances of the
CV and SD metrics, we demonstrated that Level3 data generally showed higher correlations
with biodiversity indices, and that the use of CR spectra generally improved the R values
of the correlation between SD and species diversity. Similarly to Blanco-Sacristán et al. [41],
we found that the spectral bands in the red part of the spectrum (around 680 nm) showed
to be best for estimating biodiversity in both grasslands. In our study, a random extraction
of pixels did not improve our results as in Schweiger et al. [15], who achieved successful
results based on links between spectral, functional, and phylogenetic diversity.

Man-made grasslands, obtained by sowing, are simplified ecosystems which may
not be representative of the complexity of natural field ecological conditions, where leaf
and canopy traits can contribute to optical diversity in several ways, adding complexity to
the optical and plant diversity relationships in natural grasslands [54]. This can explain
the poor performance of the optical sampling methods in complex grassland canopies.
In this respect, Wang et al. [40], adopting a modeling approach, observed that grassland
biodiversity estimations are strongly affected by species intra-variations, which can be
relevant even when caused by a single species. In natural grasslands located in hetero-
geneous landscapes such as the environment of the Alps, where (i) different associations
and sub-associations can be found within a few meters distance, and transition zones are
very frequent, (ii) geomorphology, soil characteristics and origin, and grassland vertical
structure profile can strongly vary on the spatial basis, and (iii) the number of species is
particularly high, estimating grassland α-diversity using optical methods can be extremely
challenging. From an ecological point of view, Grace et al. [39] highlighted the limits of
manipulation experiments and the need for more analyses focused on mature natural
ecosystems. In this regard, these authors stated that the ecological mechanisms cannot
be extrapolated from studies of synthesized assemblages to mature natural ecosystems.
Analogously, the optical diversity approach—based on grassland functional diversity dy-
namics determining spectra variability—may not be always transferable to mature and
very complex natural grassland ecosystems.

The VIS part of the spectrum (and in particular the red domain), characterized by a
strong absorbance, showed to be one of the key spectral areas for biodiversity detection.
This highlights the importance for further studies to investigate canopy biochemistry
variability and its link with both biodiversity and optical diversity. To detect α-biodiversity
using optical methods, we should be able to detect biochemistry content and its variability
within the canopy. However, this may not be possible when grasslands with heterogeneous
structure are observed. Previous studies on the IT-MBo grasslands [44] determined how,
due to structural complexity and heterogeneity, plant trait co-variation can strongly affect
the ability to retrieve grassland traits using spectral data. More work is needed to determine
how, in different grassland ecosystems, the optical dissimilarity of canopy spectra captures
grassland functional differences and biochemical content variability (at the plot and at
the spatial scale) determined by plant diversity. Additionally, further research will be
able to clarify if in complex heterogeneous ecosystems, such as the grasslands of the Alps,
the optical diversity approach can be adopted at the spatial scale to detect β-diversity.
Such insights will provide more robust information on the mechanisms linking the optical
diversity and the overall plant diversity.



Remote Sens. 2021, 13, 2649 19 of 23

5. Conclusions

Our study provided important observations on the performance of high spatial reso-
lution imagery for grassland plant diversity estimations. The relationship between optical
diversity and biodiversity proved to be ecosystem-dependent. The spectral diversity ap-
proach to estimate biodiversity showed a similar performance to previous studies when
artificially established grasslands were observed. On the other hand, in the natural sub-
alpine grasslands of IT-MBo, this approach did not achieve satisfactory results, even if
specific processing techniques were adopted to disentangle the optical diversity due to
plant diversity from the optical diversity related to shadows, flowers, and brown material.
The SD metric calculated from the Level3 data in the red spectral domain (around 680 nm)
showed the best optical diversity metric to estimate biodiversity in both study sites. The
results of our study showed that the use of the optical diversity approach as a proxy of plant
diversity has some limitations, particularly when high-biodiversity natural landscapes
are observed.

Spectral variation drivers include not only species richness but other important factors,
e.g., intra-specific optical, biophysical, and biochemical variability. Other important fac-
tors include, e.g., vegetation structure, shadows, and phenology. Several post-processing
methods (including brightness normalization, filtering of shadowed and bright pixels,
non-photosynthetic element pixels filtering, and continuum removal) were tested success-
fully, which generally improved the performance of the optical diversity models. On the
other hand, the pixel subsampling approach was not shown to be effective in our study.
Interesting insights were provided by the scale effect study, such as that the optimum
pixel size (1 cm) for biodiversity estimations—at the turf grass site—was generally higher
than expected, according to previous studies. However, more advanced post-processing
image methods or the adoption of higher resolution imagery (pixel size < 1 mm, which
was not tested in this study) may improve the performance of the optical diversity metrics
to estimate biodiversity even in heterogeneous grassland ecosystems. More studies are
needed to fully investigate the mechanisms at the basis of the optical diversity, to high-
light the pigment content variability and α-diversity relationships in high biodiversity
grasslands, and to provide novel insights on the reliability of β-diversity estimations at the
spatial scale.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13142649/s1, Figure S1. RGB images of the different plots at the IT-PD and the IT-MBo study
sites, Table S1: Species richness and composition of each plot investigated at the IT-PD study site,
Table S2: Species richness and composition of each of the 25 plots investigated at the IT-MBo study site,
Table S3: The highest Pearson correlation coefficient (R) and p-values (in brackets) for the relationship
between species richness and two optical diversity metrics (CV and SD) for different processing
levels at the IT-PD study site. The highest R values for each processing level are highlighted in bold,
Table S4: The highest Pearson correlation coefficient (R) and p-values (in brackets) for the relationship
between biodiversity indices (species richness, Shannon’s index, species evenness, and Simpson’s
index) and the two optical diversity metrics (CV and SD) for different processing levels at IT-MBo
the study site. The highest R values for each processing level are highlighted in bold, Table S5: The
highest Pearson correlation coefficient (R) and p-values (in brackets) for the relationship between
species richness and the two optical diversity metrics (CV and SD) calculated from Level3-processed
data at different spatial scales for the IT-PD study site. The highest R values for each spatial scale
are highlighted in bold, Table S6: The highest Pearson correlation coefficient (R) and p-values (in
brackets) for the relationship between biodiversity indices (species richness, Shannon’s index, species
evenness, and Simpson’s index) and two optical diversity metrics (CV and SD) calculated from
Level3-processed data at different spatial scales for the IT-MBo study site. The highest R values for
each spatial scale are highlighted in bold, Table S7: The highest Pearson correlation coefficient (R)
and p-values (in brackets) for the relationship between species richness and the two optical diversity
metrics (CV and SD) calculated from Level3-processed data at different sample sizes for the IT-PD
study site. The highest R values are highlighted in bold, Table S8: The highest Pearson correlation
coefficient (R) and p-values (in brackets) for the relationship between biodiversity indices (species
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richness, Shannon’s index, species evenness, and Simpson’s index) and the two optical diversity
metrics (CV and SD) calculated from Level3-processed data at different sample sizes for the IT-MBo
study site. The highest R values are highlighted in bold.
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Appendix A

Figure A1. Correlation coefficient from the Pearson correlation analysis (R) between the species richness and optical
diversity expressed as CV and SD, averaged across different spectral regions (black lines) and averaged across the spectrum
(red lines) computed from the Level0-processed data at the IT-PD site (panel (A): 1 mm pixel size; panel (B): 1.5 mm
pixel size).
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Figure A2. Correlation coefficient from the Pearson correlation analysis (R) between the optical diversity expressed as CV
and SD, averaged across different spectral regions (black lines) and averaged across the spectrum (red lines) computed
from the Level0-processed data at the IT-MBo site (panel A–D: approximately 0.9 mm pixel size) and biodiversity indices:
(A) species richness; (B) Shannon’s index; (C) species evenness; (D) Simpson’s index.
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